

Red de Control Biológico en Ríos

INFORME FINAL RÍOS 2010

V. 2 Mayo 2011

RED DE CONTROL BIOLÓGICO EN RÍOS INFORME FINAL RÍOS AÑO 2010

(V. 2)

CONSULTOR: ENSAYA Laboratorio de Ensayos Técnicos S.A.

Pol. Ind. Valdeconsejo, C/Aneto, parcela 8-A 50410 Cuarte de Huerva, Zaragoza Tlf: 976566875 E-mail: biologia@ensaya.es

Mayo 2011

EQUIPO TÉCNICO

Confederación Hidrográfica del Ebro

Concha Durán (Directora del estudio) Patricia Navarro

EQUIPO TÉCNICO

Javier Oscoz (Universidad de Navarra) Rafael Miranda (Universidad de Navarra)

Pedro Tomás (ENSAYA)

ÍNDICE

Página INTRODUCCIÓN1 METODOLOGÍA DE LOS TRABAJOS.....2 2. 3.2.2 Macrófitos: IVAM (Índice de Vegetación Acuática Macroscópica)54 3.4.2 Índice de Calidad del Bosque de Ribera (QBR)85 4.3.2 Macrófitos: IVAM (Índice de Vegetación Acuática Macroscópica)103 4.3.3 Fitobentos (diatomeas): IPS (Índice de Poluosensibilidad Específica)......109 4.4.1 Temperatura......112

4.5.2 Índice de Calidad del Bosque de Ribera (QBR)	130
4.6 ESTADO ECOLÓGICO	134
4.6.1 Estado Ecológico	134
4.6.1.1 Determinación del estado ecológico con macroinvertebrados (IBMWP)	144
4.6.1.2. Determinación del estado ecológico con macrófitos (IVAM)	148
4.6.1.3 Determinación del estado ecológico con fitobentos (IPS)	152
4.6.2 Estado Ecológico según los Indicadores Biológicos	156
4.6.3 Comparación del estado ecológico según los indicadores biológicos aplicados.	163
4.6.4 Indicadores de calidad hidromorfológicos	166
4.6.4.1 Índice de hábitat fluvial (IHF)	172
4.6.4.2 Índice de calidad del bosque de ribera	175
4.6.4.3 Resumen de los indicadores hidromorfológicos	178
4.6.4.4 Comparación entre Indicadores	181
4.7 ESTACIONES DE LA RED CEMAS QUE NO CUMPLEN LA DMA. POSIBLES CAUSAS Y	
RECOMENDACIONES DE CONTROL	183
5. RED DE REFERENCIA	203
5.1 Introducción	203
5.2 Metodología	203
5.3 RESULTADOS BIOLÓGICOS. MACROINVERTEBRADOS, MACRÓFITOS Y DIATOMEAS	203
5.3.1 Macroinvertebrados bentónicos	204
5.3.2 Macrófitos: IVAM (Índice de Vegetación Acuática Macroscópica)	217
5.3.3 Fitobentos (diatomeas): IPS (Índice de Poluosensibilidad Específica)	223
5.4 RESULTADOS FÍSICO-QUÍMICOS	226
5.4.1 Temperatura	227
5.4.2 pH	230
5.4.3 Conductividad	233
5.4.4 Oxígeno disuelto	236
5.5 RESULTADOS HIDROMORFOLÓGICOS	239
5.5.1 Índice de Hábitat Fluvial (IHF)	239
5.5.2 Índice de Calidad del Bosque de Ribera (QBR)	244
5.6 ESTADO ECOLÓGICO	247
5.6.1 Indicadores de calidad biológicos: macroinvertebrados, macrófitos y diatomeas	s247
5.6.1.1 Determinación del estado ecológico con macroinvertebrados (IBMWP)	251
5.6.1.2 Determinación del estado ecológico con macrófitos (IVAM)	255
5.6.1.3 Determinación del estado ecológico con fitobentos (IPS)	258
5.6.2 Estado Ecológico según los Indicadores Biológicos	262
A. ESTADO ECOLÓGICO SEGÚN LOS INDICADORES IBMWP E IPS	262
B. ESTADO ECOLÓGICO SEGÚN LOS INDICADORES IBMWP, IPS E IVAM	266

	5.6.3 Comparación del estado ecológico según los indicadores biológicos aplicados	269
	5.6.4 INDICADORES DE CALIDAD HIDROMORFOLÓGICOS	271
	5.6.4.1 Índice de hábitat fluvial (IHF)	273
	5.6.4.2 Índice de calidad del bosque de ribera	277
	5.6.4.3 Resumen de los indicadores hidromorfológicos	280
	5.6.4.4 Comparación entre Indicadores	283
	5.7 ESTACIONES DE LA RED DE REFERENCIA QUE NO CUMPLEN LA DMA. POSIBLES CAUSAS Y	
	RECOMENDACIONES DE CONTROL	285
6. (CONCLUSIONES GENERALES SOBRE LAS ESTACIONES DE CONTROL, LOS	
-	INDICADORES Y EL ESTADO ECOLÓGICO	. 288
	6.1 CONCLUSIONES GENERALES SOBRE LAS ESTACIONES DE CONTROL	288
	6.2 CONCLUSIONES GENERALES SOBRE LOS DIFERENTES INDICADORES	288
	6.2.1 Indicadores Biológicos	288
	6.2.2 Indicadores Físico-químicos	289
	6.2.3 Indicadores Hidromorfológicos	290
	6.3 CONCLUSIONES GENERALES SOBRE EL ESTADO ECOLÓGICO SEGÚN LOS DIFERENTES INDICADO	DRES
	de la Red de Control Operativo	291
	6.3.1 Indicadores Biológicos	291
	6.3.2 Indicadores Físico-químicos	292
	6.3.3 Indicadores Hidromorfológicos	293
	6.3.4 Estado Ecológico – Macroinvertebrados.	293
	6.3.5 Estado Ecológico – Macrófitos.	293
	6.3.6 Estado Ecológico – Fitobentos IPS (Diatomeas)	294
	6.3.7 Estado Ecológico según los Indicadores Biológicos	294
	6.3.7.1 ESTADO ECOLÓGICO SEGÚN LOS INDICADORES IBMWP E IPS	294
	6.3.7.2 ESTADO ECOLÓGICO SEGÚN LOS INDICADORES IBMWP, IPS E IVAM	295
	6.3.7.3 Comparación del estado ecológico según los indicadores biológicos aplicados	295
	6.3.8 Estado Ecológico según Indicadores Hidromorfológicos	296
	6.4 CONCLUSIONES GENERALES SOBRE EL ESTADO ECOLÓGICO SEGÚN LOS DIFERENTES INDICADO	DRES
	DE LA RED DE REFERENCIA	296
	6.4.1 Indicadores Biológicos	296
	6.4.2 Indicadores Físico-químicos	298
	6.4.3 Indicadores Hidromorfológicos	298
	6.4.4 Estado Ecológico – Macroinvertebrados.	299
	6.4.5 Estado Ecológico – Macrófitos.	299
	6.4.6 Estado Ecológico – Fitobentos IPS (Diatomeas)	299
	6.4.7 Estado Ecológico según los Indicadores Biológicos	300
	6.4.7.1 Estado Ecológico según los indicadores IBMWP e IPS	300

ANEXOS	
7. REFERENCIAS	304
6.5.3 Red de Referencia	302
6.5.2 Red de Control Operativo	302
6.5.1 Datos generales de los muestreos	302
6.5 RESUMEN DE LAS CONCLUSIONES GENERALES	302
6.4.8 Estado Ecológico según Indicadores Hidromorfológicos	301
6.4.7.3 Comparación del estado ecológico según los indicadores biológicos aplicados	300
6.4.7.2 Estado Ecológico según los indicadores IBMWP, IPS e IVAM	300

ANEXO 1. RESULTADOS BIOLÓGICOS, FÍSICO-QUÍMICOS E HIDROMORFOLÓGICOS

1. INTRODUCCIÓN

La presente memoria contiene los resultados de los trabajos de la explotación de la red de control biológico en ríos, realizados durante el año 2010, en las masas de agua superficiales, en adelante "MAS", de ríos de las Redes de Control Operativo (190) y de Referencia (42), seleccionadas para su estudio este año 2010.

En ella, se describen los ríos muestreados, la metodología utilizada en los muestreos y los resultados de los parámetros físico-químicos medidos *in situ*, de los indicadores hidromorfológicos (índices QBR e IHF) y de los indicadores biológicos basados en macroinvertebrados (IBMWP, IASPT, nº de familias totales y nº de familias IBMWP), vegetación acuática macrofítica (IVAM y nº de géneros) y fitobentos (índice de diatomeas IPS).

Tras el análisis estadístico y descriptivo de los resultados, se procede a la clasificación del estado biológico de las masas de agua (ríos) muestreados en el año 2010, de acuerdo con los criterios que establece la DMA y los grupos de trabajo de la Comisión Europea para su implementación, así como los establecidos en la Instrucción de Planificación Hidrológica "Orden ARM/2656/2008". Para estimar el estado ecológico de las masas de agua se considera la propuesta más restrictiva "uno fuera, todo fuera", que hace referencia a que el diagnóstico emitido es el peor entre los que ofrecen los distintos indicadores utilizados. Según este contenido, los objetivos establecidos son los siguientes:

- Caracterizar mediante indicadores biológicos basados en macroinvertebrados, macrófitos y diatomeas, el estado biológico.
- Caracterizar mediante indicadores hidromorfológicos el estado de las MAS.
- 3. Descripción detallada del estado bilógico de las MAS de las redes de control operativo y de referencia.
- 4. A partir de la información recabada, el objetivo principal es disponer de datos actualizados para completar la explotación de las Redes de Control Operativo y de Referencia, así como alertar de problemas, realizar sugerencias o actualizar la red de control operativo.

2. METODOLOGÍA DE LOS TRABAJOS

2.1 Masas de agua seleccionadas

Durante el año 2010 se han seleccionado estaciones situadas en masas de agua (ríos) de las Redes de Control Operativo y de Referencia. En total, para el año 2010 se seleccionaron 232 estaciones, distribuidas en las diferentes tipologías de masas de ríos reconocidas en la cuenca del Ebro, **Figura 1**.

Por su parte, la distribución geográfica de las estaciones se ilustra en la **Figura 2**, junto con los tipos de ríos en los cuales se enmarcan.

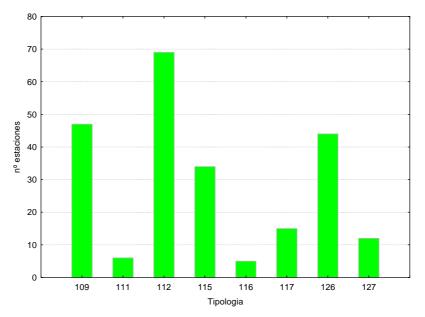


Figura 1. Distribución de las estaciones muestreadas en 2010, por tipos de ríos

Tipo 109 Ríos mineralizados de baja montaña mediterránea

Tipo 111 Ríos de montaña mediterránea silícea

Tipo 112 Ríos de montaña mediterránea calcárea

Tipo 115 Ejes mediterráneo-continentales poco mineralizados

Tipo 116 Ejes mediterráneo-continentales mineralizados

Tipo 117 Grandes ejes en ambiente mediterráneo

Tipo 126 Ríos de montaña húmeda calcárea

Tipo 127 Ríos de alta montaña

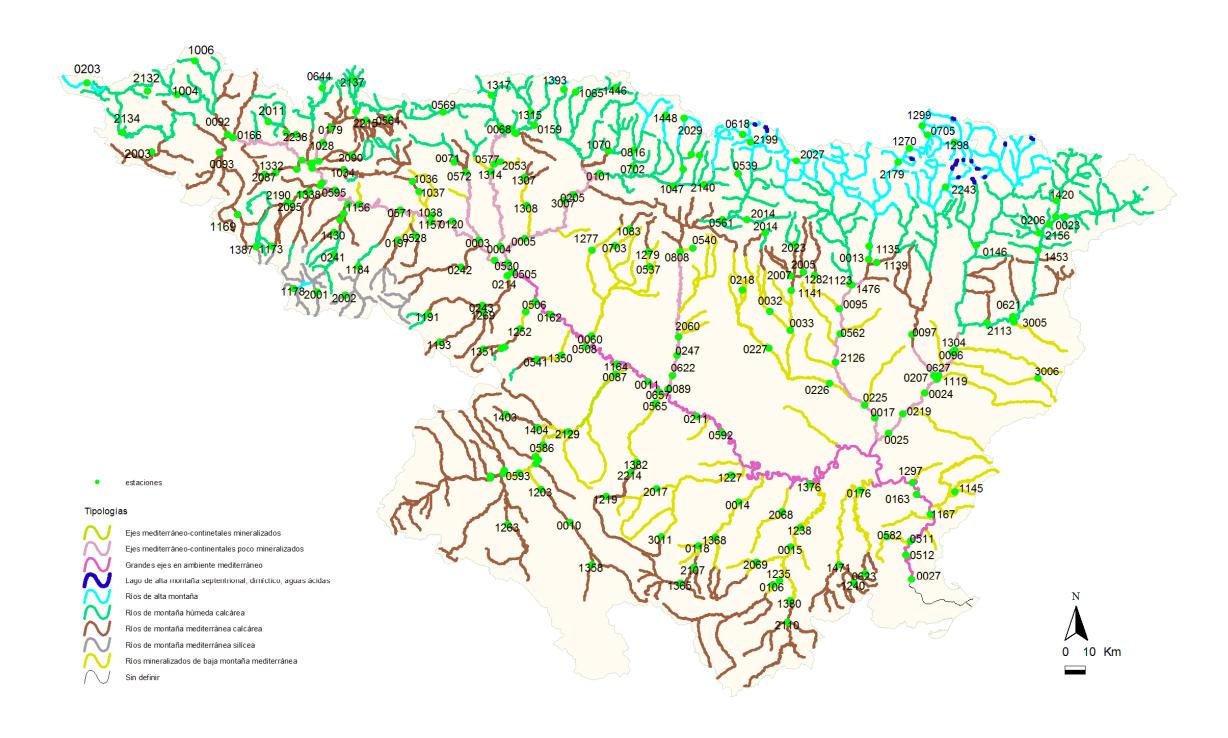


Figura 2. Localización de las masas de agua y estaciones de muestreo seleccionadas para su estudio durante 2010. Se muestran en colores las masas de agua atendiendo a su tipología (ver leyenda).

En las estaciones fluviales seleccionadas durante el año 2010, se planteó comenzar los muestreos, a principios de mayo, por aquellos tramos en los que, en base a la experiencia de años anteriores y a sus dinámicas de caudales, se solía encontrar que las condiciones de muestreo no eran adecuadas en verano. Sin embargo por causas diversas no se pudieron muestrear un total de 49 estaciones.

La campaña de muestreo de verano comenzó el 5 de mayo de 2010 y finalizó el 20 de septiembre de 2010.

Las condiciones meteorológicas fueron inestables a lo largo de toda la campaña, con algunas tormentas en mayo, julio y agosto que alargaron la época de muestreo.

En el **Cuadro 1** se recogen todos las masas de agua muestreadas en el año 2010. Junto a cada estación de muestreo, identificada por su código CEMAS, aparece la masa de agua a la que pertenece (identificada por su código), asi como la toponimia de la estación y la provincia. También se incluye una columna de observaciones donde se indican las particularidades del muestreo, así como cualquier incidencia. Se incluye, por último, la fecha del muestreo.

CUADRO 1ESTACIONES Y MASAS DE AGUAS (RÍOS) MUESTREADAS EN EL AÑO 2010

CEMAS	Toponimia	Tipología	IdMasa	Provincia	Observaciones	Clasificación	Fecha
0001	Ebro / Miranda de Ebro	115	403	Burgos	Cauce recubierto de sedimento, caudal elevado. No se toma muestra de diatomeas.		28/07/2010
0003	Ega / Andosilla	115	414	Navarra	Otros años se toman diatomeas sobre anea, pero presentaban sedimento y no se toma muestra. Oscilaciones de caudal. Muy turbio. Marcas de una reciente disminución del caudal.		29/07/2010
0004	Arga / Funes	115	423	Navarra	Se toma muestra de diatomeas sobre cantos. Muy turbio.		19/07/2010
0005	Aragón / Caparroso	115	421	Navarra	No se toman diatomeas porque el sustrato tenía sedimento. Han talado toda la ribera derecha. En la orilla izquierda había vertidos de pluviales y de alcantarillas. Mal olor y restos orgánicos.		19/07/2010
0009	Jalón / Huérmeda	116	443	Zaragoza	No muestreable, rápido y profundo.	No vadeable	26/05/2010
0010	Jiloca / Daroca	112	323	Zaragoza	Sustrato inadecuado para diatomeas, no se coge muestra. Turbio y con caudal elevado.		26/05/2010
0011	Ebro / Zaragoza - Monzalbarba	117	452	Zaragoza	No muestreado, profundo, lento y turbio, además es zona militar de los pontoneros y está prohibido el acceso.	No vadeable	11/08/2010
0013	Ésera / Graus	112	371	Huesca	Se toma muestra de diatomeas sobre bloques. Oscilaciones de caudal por sueltas de la central de Viu.		11/08/2010
0014	Martín / Hijar	109	135	Teruel	Se toma muestra de diatomeas sobre cantos. Baja turbio, restos de basura, hay una barandilla en el cauce. No se cogen macrófitos.		25/05/2010

CEMAS	Toponimia	Tipología	IdMasa	Provincia	Observaciones	Clasificación	Fecha
0015	Guadalope / der. Acequia vieja de Alcañiz	109	143	Teruel	Muestra de diatomeas sobre cantos. Ha aumentado con respecto a otros años la cobertura de Anea.		28/06/2010
0017	Cinca / Fraga	115	441	Huesca	No se toma muestra de diatomeas por la presencia de filamentosas, turbidez y sedimento.		12/08/2010
0022	Valira / Anserall (Castellciutat)	126	617	Lleida	Se muestrean diatomeas sobre bloques. Signos de crecidas recientes, huele a aguas negras, unos 3 km aguas arriba vierte una depuradora. En la ribera derecha hay un camping.		25/08/2010
0023	Segre / Seo de Urgel	126	589	Lleida	Muestra de diatomeas sobre bloques y cantos. Se muestrea el brazo de la orilla izquierda y la zona cercana del brazo central, que hay junto al campo de fútbol. Caudal elevado en el brazo central, turbidez gris. Aguas arriba hay un vertido. IHF: turbio no se ve bien.		24/08/2010
0024	Segre / Lleida	115	432	Lleida	No se toma muestra de diatomeas por la presencia de sedimento y cladophora. La mayor parte del sustrato del cauce es roca madre, sustrato adecuado en las cercanías del puente. Aguas arriba vierte la EDAR de Lleida. En la orilla izquierda desemboca una acequia. Baja turbio.		13/09/2010
0025	Segre / Serós	115	433	Lleida	Sólo se toma muestra de diatomeas sobre cantos en la orilla izquierda. El tramo es profundo y rápido, no se toman el resto de muestras.		09/09/2010
0027	Ebro / Tortosa	117	463	Tarragona	No muestreado.	No vadeable	08/09/2010
0032	Guatizalema / Peralta de Alcofea	109	160	Huesca	Han talado y clareado la vegetación de la ribera derecha para acondicionarlo como merendero. Las muestras de diatomeas se toman sobre bloques y cantos, resto cubierto de sedimento y Cladophora.		02/06/2010

CEMAS	Toponimia	Tipología	IdMasa	Provincia	Observaciones	Clasificación	Fecha
0033	Alcanadre / Peralta de Alcofea	109	157	Huesca	Muestra de diatomeas sobre bloques y cantos. Caudal bajo, ligera turbidez.		02/06/2010
0038	Najerilla / Torremontalbo	112	274	Rioja (La)	La muestra de diatomeas se toma sobre bloques. Cauce muy resbaladizo, ligeramente turbio. Sustrato inestable. No se toma muestra de macrófitos por la turbidez y la poca luminosidad del tramo. Sensor de pH estropeado.		08/07/2010
0050	Tirón / Cuzcurrita	112	261	Rioja (La)	Tramo urbano. Diatomeas sobre bloques y cantos. Resto cubierto de cladophora.		14/07/2010
0060	Arba de Luesia / Tauste	109	106	Zaragoza	El tramo presenta una playa de cantos que en años anteriores no estaba. Se toma la muestra de diatomeas sobre cantos, trozos de ladrillo y tejas. Había muchos nerítidos. QBR: aguas abajo de la estación de aforo hay una escollera en la ribera derecha. No se toma muestra de macrófitos por turbidez.		19/05/2010
0068	Arakil / Asiain	126	555	Navarra	Mucho sedimento, dragado del cauce		20/09/2010
0071	Ega / Estella (aguas arriba)	112	1742	Navarra	QBR: Han talado la chopera de la ribera izquierda, han plantado dos líneas de alisos y fresnos. En la ribera derecha han limpiado la vegetación de una acequia que en años anteriores no se apreciaba su presencia, ver 2009. Sigue el tubo de la orilla derecha vertiendo. Turbio. Muy lento, mucho sedimento. Ligeras lluvias noche anterior. No se toma muestra de diatomeas ni de macrófitos.		21/07/2010
0074	Zadorra / Arce - Miranda de Ebro	115	406	Burgos	Muestra de diatomeas sobre cantos. Disminución de caudal durante el muestreo. Ligeramente amarillento. No se toma muestra de macrófitos.		28/07/2010
0087	Jalón / Grisén	116	446	Zaragoza	Disminución de caudal reciente. Diatomeas sobre cantos.QBR: consultar años anteriores.		07/09/2010

CEMAS	Toponimia	Tipología	IdMasa	Provincia	Observaciones	Clasificación	Fecha
0089	Gállego / Zaragoza	115	426	Zaragoza	Diatomeas sobre cantos. Restos de celulosa por el cauce. Aguas arriba vierte la papelera.		09/08/2010
0090	Queiles / Azud alimentación Emb. del Val	112	300	Zaragoza	No muestreado, exceso de caudal y no accesible.	Inaccesible	05/07/2010
0092	Nela / Trespaderne	112	232	Burgos	Lento y profundo, cola de embalse. No muestreado.	No vadeable	26/07/2010
0093	Oca / Oña	112	227	Burgos	Inaccesible, turbio	Inaccesible	26/07/2010
0095	Vero / Barbastro	109	153	Huesca	Se toma muestra de diatomeas sobre cantos. QBR:consultar 2009		11/08/2010
0096	Segre / Balaguer	115	957	Lleida	No muestreado.	No representativo	26/08/2010
0097	Noguera Ribagorzana / Deriv. canal de Piñana	112	820	Huesca	No muestreado	No representativo	26/08/2010
0101	Aragón / Yesa	115	417	Navarra	Caudal bajo, turbio. Las diatomeas se toman en la Estación de aforo. QBR:consultar años anteriores.		21/09/2010
0106	Guadalope / Santolea - Derivación Ac. Mayor	109	951	Teruel	Mucho sedimento y turbio. Puede que por las ligeras lluvias que hubo los días anteriores. No se toma muestra de diatomeas ni de macrófitos. QBR: consultar 2009		29/06/2010
0118	Martín / Oliete	109	133	Teruel	Diatomeas sobre Cantos. Aguas arriba está el embalse.		25/05/2010
0120	Ebro / Mendavia (Der. Canal Lodosa)	115	413	Navarra	Caudal elevado. Sedimento. No se toma muestra de diatomeas ni de macrófitos.	No vadeable	29/07/2010
0126	Jalón / Ateca (aguas arriba)	109	107	Zaragoza	No muestreado, caudal elevado, turbio	Inaccesible	05/05/2010
0146	Noguera Pallaresa / Pobla de Segur	126	645	Lleida	Diatomeas sobre bloques. Caudal bajo, signos de oscilaciones de caudal en los musgos.		24/08/2010
0159	Arga / Huarte	126	541	Navarra	Diatomeas sobre bloques.		19/07/2010

CEMAS	Toponimia	Tipología	IdMasa	Provincia	Observaciones	Clasificación	Fecha
0162	Ebro / Pignatelli	117	449	Navarra	Oscilaciones de caudal, sedimento y oscillatoriales. No se toma muestra de diatomeas. Los macrófitos se cogen en el rápido inferior.		07/09/2010
0163	Ebro / Ascó	117	460	Tarragona	No muestreado, profundo.	No vadeable	09/09/2010
0166	Jerea / Palazuelos de Cuesta Urria	112	234	Burgos			26/07/2010
0176	Matarraña / Nonaspe	109	167	Zaragoza	Charcos intermitentes. No se muestrea.	Seco	08/09/2010
0179	Zadorra / Vitoria - Trespuentes	112	249	Alava	Cantos, el cauce estaba cubierto de cladophora. QBR: se hace aguas arriba del parque.		15/07/2010
0180	Zadorra / Entre Mendivil y Durana	126	243	Alava	No se toma muestra de diatomeas por la presencia de sedimento en el sustrato.		15/07/2010
0184	Manubles / Ateca	112	321	Zaragoza	Diatomeas sobre bloques y cantos.		05/05/2010
0189	Oroncillo / Orón	112	239	Burgos	Hay un muro de escollera en la ribera izquierda. Han hecho dos bajadas al río desde las huertas. Tubo de vertido junto a la estación de aforo. Diatomeas sobre una teja, todo el sustrato del cauce con una fina capa de sedimento. Baja turbio, gris. No se cogen macrófitos.		28/07/2010
0197	Leza / Ribafrecha	112	276	Rioja (La)	Turbidez. No se toma muestra de diatomeas. Oscilaciones de caudal. Mirar caudal de la estación de aforo del domingo anterior.		06/07/2010
0203	Híjar / Espinilla	127	841	Cantabria	Diatomeas sobre cantos		27/07/2010
0205	Aragón / Cáseda	115	420	Navarra	Caudal elevado por sueltas de Itoiz, sólo se puede muestrear la orilla izquierda. Diatomeas sobre Bloques y cantos.		20/09/2010
0206	Segre / Plá de San Tirs	126	622	Lleida	Baja turbio, olor a WC, corriente fuerte. Muestra de diatomeas sobre bloques y cantos. No se toma muestra de macrófitos.		25/08/2010
0207	Segre / Vilanova de la Barca	115	428	Lleida	Caudal elevado.Recubierto de filamentosas que impiden la toma muestra de diatomeas.		13/09/2010

CEMAS	Toponimia	Tipología	IdMasa	Provincia	Observaciones	Clasificación	Fecha
0208	Ebro / Haro	115	408	Rioja (La)	No muestreado, caudal elevado	No vadeable	28/07/2010
0211	Ebro / Presa Pina	117	454	Zaragoza	Lento, profundo y con sedimento. No se toman diatomeas. Ha aumentado el tamaño de playa de la orilla izquierda.		08/09/2010
0214	Alhama / Alfaro	109	97	Rioja (La)	Baja turbio. En Cintruénigo casi no lleva agua, le vierten agua del canal. El caudal está bajando, lluvias el fin de semana. Cubierto de cladophora. Se ha estropeado el sensor de pH. QBR: consultar datos 2008-2009. No se toma muestra de macrófitos.		06/07/2010
0217	Arga / Ororbia	126	548	Navarra	Baja muy turbio. La muestra de diatomeas se toma sobre cantos con un poco de sedimento		20/09/2010
0218	Isuela / Pompenillo	109	163	Huesca	Muestra de diatomeas sobre cantos. Aguas arriba vierte la EDAR de Huesca, hay un vertido en la orilla derecha.		27/05/2010
0219	Segre / Torres de Segre	115	433	Lleida	Cladophora y sedimento, en las zonas profundas está turbio. No se cogen diatomeas.		13/09/2010
0225	Clamor Amarga / Aguas abajo de Zaidín	109	166	Huesca	No se toma muestra de diatomeas. Caudal elevado. Turbidez y sedimento. P. pectinatus. No se toma muestra de macrófitos.		12/08/2010
0226	Alcanadre / Ontiñena	109	165	Huesca	Las diatomeas se toman sobre Anea. Caudal elevado y muy turbio. Oscillatoria, Cladophora, Audouinella, Tetrasporidium. No se toma muestra de macrófitos.		09/08/2010
0227	Flumen / Sariñena	109	164	Huesca	No muestreado, exceso de caudal.	No vadeable	02/06/2010
0241	Najerilla / Anguiano	126	502	Rioja (La)	Muestra de diatomeas sobre bloques. Aguas arriba hay una central hidroeléctrica. Se ha estropeado el sensor de pH.		07/07/2010
0242	Cidacos / Autol	112	288	Rioja (La)	Bloques y cantos, sustrato muy limpio para la toma de muestra de diatomeas, signos de crecidas. QBR: consultar 2008.		06/07/2010

CEMAS	Toponimia	Tipología	IdMasa	Provincia	Observaciones	Clasificación	Fecha
0243	Alhama / Venta de Baños de Fitero	112	297	Rioja (La)	Muestra de diatomeas sobre cantos. Aguas arriba ha entrado maquinaria. Sensor de pH estropeado. QBR: causas naturales.		06/07/2010
0247	Gállego / Villanueva	115	426	Zaragoza	Muestra de diatomeas sobre cantos. Caudal elevado, muestreo se reduce a orilla izquierda. Turbio. Oscillatoria, Spirogyra, Myriophyllum, Cladophora y Tetraspora. No se toma muestra de macrófitos.		09/08/2010
0504	Ebro / Rincón de Soto	115	416	Rioja (La)	Por el sedimento no se cogen diatomeas, oscilaciones de caudal.		14/09/2010
0505	Ebro / Alfaro	117	447	Rioja (La)	No muestreado, el río está erosionando la orilla derecha.	No vadeable	06/07/2010
0506	Ebro / Tudela	117	448	Navarra	El sedimento, la turbidez y la profundidad impiden el muestreo de diatomeas y de macrófitos. Oscilaciones de caudal por lluvias en cabecera y pirineos.		07/09/2010
0508	Ebro / Gallur (abto., aguas arriba río Arba)	117	450	Zaragoza	Dragado para mejorar la fluidez. No se toma muestra de diatomeas ni de macrófitos.	Obras	07/09/2010
0511	Ebro / Benifallet	117	462	Tarragona	Profundo. No muestreado	No vadeable	09/09/2010
0512	Ebro / Xerta	117	463	Tarragona	Las diatomeas se muestrean sobre cantos. QBR: ver años anteriores.		08/09/2010
0528	Jubera / Murillo de Río Leza	112	277	Rioja (La)	Seco. No muestreado.	Seco	14/09/2010
0530	Aragón / Milagro	115	424	Navarra	El sedimento impide el muestreo adecuado de diatomeas. Aguas abajo están construyendo el viaducto de la variante. Baja turbio.		19/07/2010
0537	Arba de Biel / Luna	109	103	Zaragoza	Paso de tractores, punto de extracción de agua para las cubas. Aguas abajo está remansado y aguas arriba está el azud. Muestra de diatomeas sobre cantos y bloques.		06/05/2010

CEMAS	Toponimia	Tipología	IdMasa	Provincia	Observaciones	Clasificación	Fecha
0539	Aurin / Isín	126	568	Huesca	Toma de diatomeas sobre bloques. QBR: vaso de embalse colmatado.		18/08/2010
0540	Fontobal / Ayerbe	109	116	Huesca	Cauce recubierto por Apium, Potentilla, se ha cerrado. Mucho sedimento fino y restos vegetales de encina arrastrados, hojarasca y bellotas. Muestra de diatomeas sobre cantos.		17/08/2010
0541	Huecha / Bulbuente	112	302	Zaragoza	Seco. No muestreado.	Seco	19/05/2010
0561	Gállego / Jabarrella	126	575	Huesca	Muestra de diatomeas sobre bloques.		17/08/2010
0562	Cinca / Aguas abajo Monzón (Conchel)	115	437	Huesca	Ha erosionado la orilla derecha, ha comenzado a incidir en la playa de gravas del centro del cauce. Se toma muestra de diatomeas sobe bloques y cantos.		11/08/2010
0564	Zadorra / Salvatierra	112	241	Alava	Mal olor, aguas arriba vierte la EDAR de Salvatierra, aguas abajo vertido de la fosa séptica. Sedimento, no se toman diatomeas ni macrófitos. QBR:consultar 2009.		15/07/2010
0565	Huerva / Fuente de la Junquera	109	115	Zaragoza	Aguas arriba vierten la EDAR de Cuarte de Huerva y el Polígono Industrial. Se toma muestra de diatomeas sobre cantos.		07/08/2010
0569	Arakil / Alsasua	126	551	Navarra	No muestreado	Inaccesible	28/07/2010
0571	Ebro / Logroño - Varea	115	411	Rioja (La)	Se ha creado una isla en el centro del cauce. No se toma muestra de diatomeas por sedimento y cladophora. QBR: consultar años anteriores.		14/09/2010
0572	Ega / Arinzano	112	285	Navarra	Sedimento, turbidez y oscilaciones de caudal, no se cogen diatomeas ni macrófitos.		21/07/2010
0574	Najerilla / Nájera, Aguas abajo	112	270	Rioja (La)	Aguas arriba vierte la EDAR de Nájera. Al inicio del muestreo bajaba turbio por la orilla izquierda, al final había desaparecido. Sustrato muy inestable. Muestra de diatomeas sobre bloques.		08/07/2010
0577	Arga / Puentelarreina	115	422	Navarra	No muestreado, lluvias y crecidas.	No vadeable	21/07/2010

CEMAS	Toponimia	Tipología	IdMasa	Provincia	Observaciones	Clasificación	Fecha
0582	Canaleta / Bot	109	178	Tarragona	No adecuado para el muestreo	No representativo	09/09/2010
0586	Jalón / Sabiñán	116	444	Zaragoza	Baja muy turbio, no se ve el sustrato del fondo. No se toma muestra de diatomeas por sedimento.		01/06/2010
0592	Ebro / Pina de Ebro	117	455	Zaragoza	Profundo, turbio y sedimento, no se coge muestra de diatomeas. QBR: consultar años anteriores.		08/09/2010
0593	Jalón / Terrer	109	108	Zaragoza	Caudal elevado y agua fría, desembalse de la Tranquera. Muestra de diatomeas sobre cantos. Se ha estropeado el conductivímetro.		03/06/2010
0595	Ebro / San Vicente de la Sonsierra	115	409	Rioja (La)	Caudal elevado. Muestreo limitado al primer rápido aguas abajo del azud, el resto es inaccesible por profundidad y fuerte corriente. Sustrato cubierto de cladophora, impide la toma de muestra de diatomeas. QBR: consultar 2008.		14/09/2010
0618	Gállego / Embalse del Gállego	127	848	Huesca	Diatomeas sobre cantos, sustrato muy inestable, vaso de embalse colmatado, meten maquinaria todos los años. D. geminata. Vaso de embalse colmatado, han limpiado vegetación.		18/08/2010
0621	Segre / Derivación Canal Urgell	126	959	Lleida	No muestreado	No vadeable	26/08/2010
0622	Gállego / Derivación Acequia Urdana	115	426	Zaragoza	No muestreado	No representativo	09/08/2010
0623	Algas / Mas de Bañetes	112	398	Teruel	Acceso complicado. No se toma muestra de diatomeas por filamentosas. QBR: hay una toma de agua en el cauce.		01/07/2010
0627	Noguera Ribagorzana / Derivación Acequia Corbins	115	431	Lleida	Caudal elevado. Las diatomeas se muestrean sobre bloques.		13/09/2010
0644	Bayas / Aldaroa	126	485	Alava	Muestra de diatomeas sobre bloques.		12/07/2010

CEMAS	Toponimia	Tipología	IdMasa	Provincia	Observaciones	Clasificación	Fecha
0657	Ebro / Zaragoza - Almozara	117	452	Zaragoza	Sedimento muy fino, fuerte olor a descomposición, profundidad baja, oscilaciones de caudal. No se toma muestra de diatomeas. QBR: consultar años anteriores. Se ha estropeado el sensor de pH.		07/09/2010
0701	Omecillo / Espejo	112	1702	Alava	Aguas arriba está instalada la piscina fluvial. Muestra de diatomeas sobre bloques y cantos. Han limpiado la ribera derecha del parque.		22/07/2010
0702	Escá / Sigüés	126	526	Zaragoza	Baja turbio, por algún afluente en el que haya llovido. En Burgui bajaba transparente. Muestra de diatomeas sobre bloques, presentaban algas incrustantes.		21/09/2010
0703	Arba de Luesia / Malpica de Arba	109	100	Zaragoza	Diatomeas sobre bloques y cantos		06/05/2010
0705	Garona / Es Bordes	127	786	Lleida	Oscilaciones de caudal. Diatomeas sobre bloques y cantos		23/08/2010
0808	Gállego / Santa Eulalia	115	425	Zaragoza	Caudal elevado. Diatomeas sobre bloques. QBR: revisar plantas alóctonas. No se cogen macrófitos.		17/08/2010
0816	Escá / Burgui	126	526	Navarra	El cauce se ha centrado con respecto al ojo central del puente. Diatomeas sobre bloques.		21/09/2010
1004	Nela / Puentedey	126	474	Burgos	Se mueve el punto a Puentedey, aguas arriba del puente natural. El punto original de la carretera es muy peligroso.		27/07/2010
1006	Trueba / El Vado	126	477	Burgos	Caudal bajo, muestra de diatomeas sobre bloques y cantos		26/07/2010
1028	Zadorra / La Puebla de Arganzón	115	405	Burgos	Diatomeas sobre bloques y cantos.		14/07/2010
1032	Ayuda / Carretera Miranda	112	254	Alava	Diatomeas sobre Anea*		22/07/2010
1034	Inglares / Peñacerrada	112	255	Alava	Diatomeas sobre cantos y restos de ladrillo y tejas.		12/07/2010

CEMAS	Toponimia	Tipología	IdMasa	Provincia	Observaciones	Clasificación	Fecha
1036	Linares / Espronceda	112	278	Navarra	No muestreado, cubierto de anea, carrizo y lento.	No representativo	29/07/2010
1037	Linares / Torres del Río	109	91	Navarra	Ha aumentado la cobertura de anea, carrizo y zarzas. Sólo 20 m muestreables. Disminución de caudal reciente. Sigue el tubo de vertido de la orilla derecha. Sustrato inadecuado para diatomeas. No se cogen macrófitos,		29/07/2010
1038	Linares / Mendavia	109	91	Navarra	Turbio, sedimento por obras de la variante, no se muestrean diatomeas.		29/07/2010
1047	Aragón / Puentelarreina de Jaca	126	519	Huesca	Se ha ensanchado el cauce, ha erosionado la orilla izquierda y ha aumentado la profundidad. Muestra de diatomeas sobre bloques		18/08/2010
1065	Urrobi / Puente carretera Garralda	126	533	Navarra	Ligeramente turbio. Muestra de diatomeas sobre bloques		20/07/2010
1070	Salazar / Aspurz	126	540	Navarra	Caudal muy bajo, en la playa izquierda ha crecido la vegetación y el río se ha movido hacia la ribera derecha. Muestra de diatomeas sobre bloques y cantos, con leve sedimento.		21/09/2010
1083	Arba de Luesia / Luesia	109	100	Zaragoza	Muestra de diatomeas sobre cantos.		06/05/2010
1119	Corp / Vilanova de la Barca	109	151	Lleida	No muestreado, exceso de caudal	Inaccesible	13/09/2010
1123	Cinca / El Grado	126	678	Huesca	Obras de extracción de gravas. No muestreado.	Obras	11/08/2010
1135	Ésera / Perarrua	126	679	Huesca	Oscilaciones de caudal por central de Viu. Diatomeas sobre bloques.		11/08/2010
1139	Isábena / Capella E.A. 47	112	372	Huesca	Turbio, diatomeas sobre cantos. Un galápago de Florida.		11/08/2010
1141	Alcanadre / Puente a las Cellas	109	157	Huesca	Oscilaciones de caudal, aumento de + de 5 cm durante el muestreo. Diatomeas sobre bloques .		02/06/2010
1145	Ciurana / Gratallops	109	171	Tarragona	No muestreado	Seco	09/09/2010

CEMAS	Toponimia	Tipología	IdMasa	Provincia	Observaciones	Clasificación	Fecha
1156	Ebro / Puente de El Ciego	115	410	Rioja (La)	Se ha desplazado el cauce hacia la ribera izquierda. Hierba de la pampa, Cortaderia. Diatomeas sobre bloques y cantos		14/09/2010
1157	Ebro / Mendavia	115	412	Rioja (La)	Exceso de caudal, no muestreado	Inaccesible	29/07/2010
1164	Ebro / Alagón	117	451	Zaragoza	Muy turbio, lento.Sustrato inadecuado para diatomeas. QBR: han talado la chopera de la ribera derecha. No se cogen macrófitos.		07/09/2010
1167	Ebro / Mora de Ebro	117	461	Tarragona	Se muestrea en la orilla izquierda. Cubierto de Potamogeton.Sustrato inadecuado para diatomeas.		09/09/2010
1169	Oca / Villalmondar	112	221	Burgos	No parece que tenga condiciones para ser de referencia del tipo 112. Presenta una leve turbidez y algas filamentosas en abundancia. Usos del suelo de la cuenca vertiente son secano y pastos. Revisar los físico-químicos para reubicar el punto aguas arriba. Diatomeas sobre bloques y cantos		13/07/2010
1173	Tirón / Aguas arriba Fresneda de la Sierra	111	179	Burgos	Se mueve el punto al puente. Bosque en galería, muy poca iluminación. Diatomeas sobre bloques y cantos		13/07/2010
1177	Tirón / Haro	112	267	Rioja (La)	Aguas arriba del puente. Diatomeas sobre bloques. Muy turbio, no se cogen macrófitos. Se observan: Cladophora, ranunculus, lemna.		14/07/2010
1178	Najerilla / Villavelayo (aguas arriba)	111	183	Rioja (La)	En la ribera izquierda hay pastos, antigua presa aguas arriba. Diatomeas sobre bloques y cantos. No funciona el sensor de pH. QBR: hay una presa colmatada.		07/07/2010
1184	Iregua / Puente De Almarza	111	203	Rioja (La)	Caudal elevado y fuerte corriente, en las riberas hay signos de lluvias recientes. Diatomeas sobre bloques y cantos. No funciona el sensor de pH.		07/07/2010

CEMAS	Toponimia	Tipología	IdMasa	Provincia	Observaciones	Clasificación	Fecha
1191	Linares / San Pedro Manrique	112	296	Soria	Presenta escollera en ambas orillas. Aguas abajo del puente de la carretera lo desvían a una acequia. Diatomeas sobre cantos		05/07/2010
1193	Alhama / Magaña	112	295	Soria	Hay bloques de la obra de construcción del puente en el cauce. Diatomeas sobre bloques y cantos.		05/07/2010
1203	Jiloca / Morata de Jiloca	112	323	Zaragoza	Turbio. Diatomeas sobre cantos		26/05/2010
1219	Huerva / Cerveruela	112	821	Zaragoza	Baja un poco gris, visibilidad del fondo del cauce limitada. Se ha caido un árbol en el centro del cauce. Diatomeas sobre bloques y cantos, con algo de sedimento, estaba así todo el tramo. No se cogen macrófitos		04/05/2010
1227	Aguas Vivas / Azaila	109	129	Teruel	No muestreado	No representativo	25/05/2010
1235	Guadalope / Mas de las Matas	109	137	Teruel	Diatomeas sobre bloques y cantos		28/06/2010
1238	Guadalope / Alcañiz (aguas abajo)	109	145	Teruel	Diatomeas sobre bloques		28/06/2010
1240	Matarraña / Beceite, Parrizal	112	383	Teruel	Caudal bajo, cauce recubierto de filamentosas. Diatomeas sobre Cantos		01/07/2010
1251	Queiles / Los Fayos	112	300	Zaragoza	Diatomeas sobre Bloques y cantos		05/07/2010
1252	Queiles / Novallas	112	301	Zaragoza	Ha aumentado la vegetación de ribera. Las diatomeas se toman sobre Anea*		05/07/2010
1260	Jalón / Bubierca	112	314	Zaragoza	Baja turbio, corriente fuerte que limita ligeramente el muestreo. Aguas arriba hay un azud y desembocan 2 acequias, una por cada lado. Sustrato inadecuado para diatomeas. No se cogen macrófitos.		05/05/2010

CEMAS	Toponimia	Tipología	IdMasa	Provincia	Observaciones	Clasificación	Fecha
1263	Piedra / Cimballa	112	315	Zaragoza	Cauce con mucha vegetación, ligeramente turbio, tubo de desagüe en la margen izquierda con leve olor a WC. Bloques y cantos con deposiciones de carbonatos y Audouinella (o Chantransia de Batrachospermum cementada)		26/05/2010
1269	Añamaza / Casetas de Barnueva	112	298	Rioja (La)	Se ha estropeado el sensor de pH. Aguas arriba lo van cortando para derivar el agua a las acequias. Diatomeas sobre bloques y cantos		06/07/2010
1270	Ésera / Plan de l'Hospital de Benasque	127	764	Huesca	Diatomeas sobre cantos. QBR: no aplicable por altitud.		23/08/2010
1277	Arba de Riguel / Sádaba	109	105	Zaragoza	Canalizado, cubierto de Vaucheria. Cantos, con una capa muy fina de sedimento, se toma muestra de diatomeas. QBR: canalizado.		19/05/2010
1279	Arba de Biel / El Frago	112	304	Zaragoza	Se muestrean diatomeas sobre cantos.		06/05/2010
1282	Vero / Camping de Alquézar	112	375	Huesca	Zona de baño, aguas arriba está el Camping de Alquézar, baja turbio por la gente que se está bañando. Muestrear en Junio. Diatomeas sobre cantos		10/08/2010
1297	Ebro / Flix (aguas abajo de la presa)	117	459	Tarragona	Roca madre, inadecuado para el muestreo de macroinvertebrados. Sustrato inadecuado para diatomeas. Se cogen macrófitos.		09/09/2010
1298	Garona / Arties	127	782	Lleida	Aguas debajo de la central de Artiés. Diatomeas sobre bloques. QBR: consultar años anteriores.		24/08/2010
1299	Garona / Bossost	127	788	Lleida	No muestreado, exceso de caudal.	Inaccesible	23/08/2010
1304	Sio / Balaguer E.A. 182	109	148	Lleida	Inaccesible, turbio	Inaccesible	26/08/2010
1306	Ebro / Ircio	115	407	Alava	Caudal elevado, muy turbio, se muestra la orilla izquierda. Se toma muestra de diatomeas en 8 Cantos cercanos a la orilla. No se coge muestra de macrófitos.		28/07/2010
1307	Zidacos / Barasoain	112	292	Navarra	Sustrato inadecuado para diatomeas.		19/07/2010

CEMAS	Toponimia	Tipología	IdMasa	Provincia	Observaciones	Clasificación	Fecha
1308	Zidacos / Olite	109	94	Navarra	Sustrato inadecuado para diatomeas.		19/07/2010
1311	Arga / Landaben - Pamplona	126	546	Navarra	Muy turbio.Cantos, leve capa de sedimento. Se toman diatomeas. No se cogen macrófitos.		20/09/2010
1314	Salado / Mendigorria	109	96	Navarra	No muestreado, exceso de caudal.	Inaccesible	21/07/2010
1315	Ulzama / Olave	126	544	Navarra	Caudal bajo, color amarillento. Sedimento		20/07/2010
1317	Larraun / Urritza	126	554	Navarra	Caudal bajo, cubierto de Cladophora. Diatomeas sobre Bloques.		28/07/2010
1332	Oroncillo / Pancorbo	112	239	Burgos	Parque fluvial con escollera en la ribera derecha. En la izquierda hay huertas con bombas de extracción de agua. Antes del puente hay un vertido en la ribera derecha. Al final del tramo, antes del salto de agua, entra un tubo con agua. Diatomeas sobre Anea.		14/07/2010
1338	Oja / Casalarreina	112	264	Rioja (La)	Diatomeas sobre bloques y cantos. QBR: hay un parque fluvial.		14/07/2010
1350	Huecha / Mallén	109	99	Zaragoza	Ha aumentado la cobertura de carrizo y anea, recubierto de apium, el cauce está más abierto que en 2009. No se cogen diatomeas.		19/05/2010
1351	Val / Agreda	112	861	Soria	Diatomeas sobre Cantos, vertidos, restos orgánicos. Siguen vertiendo al río.		05/07/2010
1358	Jiloca / Calamocha	112	322	Teruel	Zona de parque, orillas de bloques de piedra cementados. Sustrato inadecuado para diatomeas.		26/05/2010
1365	Martín / Montalbán	112	342	Teruel	Tiene un azud del que nace una acequia. En la ribera derecha vierte una acequia. Ligeramente turbio, gris. Huele a vertido cercano. Sustrato inadecuado para diatomeas.		25/05/2010
1368	Escuriza / Ariño	109	134	Teruel	Diatomeas sobre cantos, el cauce presentaba una fina capa de sedimento, caudal bajo.		25/05/2010
1376	Guadalope / Palanca- Caspe	109	911	Zaragoza	No muestreado	No representativo	08/09/2010

CEMAS	Toponimia	Tipología	IdMasa	Provincia	Observaciones	Clasificación	Fecha
1380	Bergantes / Mare Deu de la Balma	112	356	Castellón/Castelló	Las diatomeas se toman sobre cantos, sustrato cementado.		29/06/2010
1382	Huerva / Aguas abajo Villanueva de Huerva	109	822	Zaragoza	Caudal elevado y corriente fuerte, ligero color gris. Aguas arriba han talado parte de la ribera izquierda para construir el colector de la EDAR. Tubos del paso de tractores colmatados. El caudal está estable durante varios días, han crecido algas en el hormigón del paso. Diatomeas sobre cantos. No se cogen macrófitos.		04/05/2010
1387	Urbión / Santa Cruz del Valle	111	180	Burgos	Ribera alterada, huertas y canal en la ribera derecha que lleva al molino. Diatomeas sobre bloques y cantos		13/07/2010
1393	Erro / Sorogain	126	535	Navarra	Caudal bajo- Diatomeas sobre bloques		20/07/2010
1398	Guatizalema / Nocito	126	686	Huesca	Caudal bajo. Diatomeas sobre cantos		17/08/2010
1403	Aranda / Aranda del Moncayo	112	823	Zaragoza	Diatomeas se toman sobre cantos, Bosque en galería muy cerrado, troncos caidos sobre el cauce.		01/06/2010
1404	Aranda / Brea	109	110	Zaragoza	Cauce cubierto por Cladophora, Oedogonium, Zannichellia y Groenlandia, huele a WC. Diatomeas sobre bloques y cantos. QBR: consultar 2009, tramo urbano.		01/06/2010
1411	Peregiles / Puente Antigua N-II	112	324	Zaragoza	Caudal bajo, cauce recubierto por Apium, aguas arriba del puente de la N-II-a está remansado. El sensor de oxígeno disuelto da lecturas inestables, tras comprobar la membrana y calibrarlo varias veces, se estabiliza. Diatomeas sobre cantos. QBR: consultar 2009		05/05/2010
1420	Valira / Aduana	126	613	Lleida	Bloques, restos de WC. Se toma muestra de diatomeas.		25/08/2010
1430	Cárdenas / Cárdenas	112	269	Rioja (La)	Diatomeas sobre bloques y cantos. Escollera en ambas orillas, parque fluvial. Oscilaciones de caudal. Se ha estropeado el sensor de pH.		08/07/2010

CEMAS	Toponimia	Tipología	IdMasa	Provincia	Observaciones	Clasificación	Fecha
1440	Trueba / Villacomparada	126	478	Burgos	En el brazo derecho vierte la EDAR, se muestrea en el brazo izquierdo aguas arriba del vertido de la EDAR. Escollera en la ribera derecha. Diatomeas sobre bloques y cantos		26/07/2010
1446	Irati / Cola Embalse de Irabia	126	531	Navarra	Resbaladizo, diatomeas sobre bloques.		20/07/2010
1448	Veral / Zuriza	127	694	Huesca	Más caudal que otros años, agua más fría. Diatomeas sobre bloques. QBR: no se aplica por altitud.		19/08/2010
1453	Segre / Organyá	126	636	Lleida	Diatomeas sobre cantos. Sustrato inestable, obras recientes en la escollera de la ribera derecha.		25/08/2010
1471	Matarraña / Aguas arriba de la desembocadura del Tastavins	112	391	Teruel	Cauce recubierto de potamogeton, groenlandia, veronica, chara y tetrasporidium. Musgos. Se toma muestra de diatomeas.		01/07/2010
1476	Ésera / Desembocadura	115	434	Huesca	Diatomeas sobre cantos		11/08/2010
2001	Urbión / Viniegra de Abajo	111	194	Rioja (La)	Se muestrea aguas arriba de la unión del arroyo. Diatomeas sobre bloques y cantos. El sensor de pH no funciona.		07/07/2010
2002	Mayor / Aguas Abajo Villoslada de Cameros	111	197	Rioja (La)	Diatomeas sobre bloques. Se ha estropeado el sensor de pH.		07/07/2010
2003	Rudrón / Tablada de Rudrón	112	217	Burgos	Se mueve el punto, el original es zona urbana con piscina fluvial, tiene la ribera alterada y no es representativo de la masa. Se traslada junto al refugio de pescadores unos km aguas abajo, junto a un puente. Diatomeas sobre bloques.		27/07/2010

CEMAS	Toponimia	Tipología	IdMasa	Provincia	Observaciones	Clasificación	Fecha
2005	Isuala / Alberuela de la Liena	112	377	Huesca	Caudal bajo, han limpiado el cauce para quitar los restos de los desprendimientos de la ladera izquierda. Diatomeas sobre bloques y cantos. Disminución de caudal reciente.		10/08/2010
2007	Alcanadre / Casbas	112	381	Huesca	Bloques y cantos con deposiciones de carbonatos. Se muestrean diatomeas.		10/08/2010
2011	Omecillo / Corro	126	481	Alava	Cantos, con deposiciones de carbonatos. Desemboca en el tramo el arroyo Pinedo. Se toman diatomeas.		22/07/2010
2012	Estarrón / Aísa	126	514	Huesca	Diatomeas sobre bloques		19/08/2010
2013	Osia / Jasa	126	517	Huesca	Diatomeas sobre bloques. QBR: consultar 2009.		19/08/2010
2014	Guarga / Ordovés	126	574	Huesca	Zona de baño, múltiples represas de bloques. Diatomeas sobre cantos y gravas		17/08/2010
2017	Cámaras / Herrera de los Navarros	109	127	Zaragoza	Seco	Seco	05/05/2010
2023	Mascún / Rodellar	126	684	Huesca	Caudal bajo. Bloques y cantos con deposiciones de carbonatos, se toma muestra de diatomeas.		10/08/2010
2024	Aragón Subordán / Embún	126	518	Huesca	Siguen los dos vertidos en la orilla derecha, es imposible muestrear bien los macrófitos en los rápidos inferiores, corriente muy fuerte. Diatomeas sobre bloques y cantos		19/08/2010
2027	Arazas / Torla (pradera Ordesa)	127	785	Huesca	Diatomeas sobre bloques		18/08/2010
2029	Aragón Subordán / Hecho (Selva de Oza)	127	693	Huesca	Diatomeas sobre bloques. Cauce resbaladizo		19/08/2010
2053	Robo / Obanos	109	95	Navarra	Baja turbio, tormentas noche anterior. Han limpiado la vegetación del cauce. No se toman diatomeas ni macrófitos.		21/07/2010

CEMAS	Toponimia	Tipología	IdMasa	Provincia	Observaciones	Clasificación	Fecha
2060	Barranco de la Violada / Zuera (aguas arriba)	109	120	Zaragoza	Aguas arriba han limpiado el carrizo de la ribera izquierda. Sedimento y P.pectinatus. Se ha estropeado el conductivímetro, en el punto anterior ha subido el caudal y se ha mojado el equipo. No hay sustrato adecuado para la toma de muestras de diatomeas. QBR: el estado es igual a 2009.		02/06/2010
2068	Regallo / Valmuel	109	136	Zaragoza	No muestreado.	No vadeable	25/05/2010
2069	Alchozasa / Alcorisa	109	141	Teruel	No muestreado.	Seco	25/05/2010
2087	Oroncillo / Santa María de Ribarredonda	112	238	Burgos	Diatomeas sobre cantos. Caudal bajo, recubierto de cladophora.		14/07/2010
2090	Saraso / Condado de Treviño	112	251	Burgos	Sustrato inadecuado para la toma de muestras de diatomeas y macrófitos, bosque en galeria.		12/07/2010
2095	Relachigo / Herramélluri	112	260	Rioja (La)	Tubos para regadío que cruzan el río, paso de coches y tractores. Diatomeas sobre cantos		13/07/2010
2101	Yalde / Somalo	112	273	Rioja (La)	Turbio, no se toma muestra de diatomeas ni macrófitos. No funciona el sensor de pH.		08/07/2010
2104	Jalón / Alhama de Aragón	112	312	Zaragoza	Baja turbio, marrón, márgenes con escollera de bloques, muestreo limitado a zona cercana a la orilla, el centro del cauce es profundo. Se observa P. pectinatus.Cantos con sedimento que impiden el muestreo de diatomeas. No se toma muestra de macrófitos.		05/05/2010
2107	Martín / Obón	112	344	Teruel	Baja turbio. Hay signos de crecidas en las orillas, arrastre de Cladophora. Muestra de diatomeas sobre cantos.		25/05/2010
2110	Celumbres / Forcall	112	354	Castellón/Castelló	Caudal muy bajo, plantación de sauces de más de 2 m de altura, han removido el sustrato, exceso de limo en el cauce, escollera en orillas. Aguas abajo vierte la EDAR. Diatomeas sobre cantos		29/06/2010

CEMAS	Toponimia	Tipología	IdMasa	Provincia	Observaciones	Clasificación	Fecha
2113	Boix / La Pineda	112	362	Lleida	Diatomeas sobre cantos.		26/08/2010
2124	Ebro / Miranda de Ebro (aguas abajo)	115	404	Burgos	Exceso de caudal, no muestreado	No vadeable	28/07/2010
2126	Cinca / Santalecina	115	438	Huesca	No muestreable.	Inaccesible	09/08/2010
2129	Jalón / Ricla (ag. arriba)	116	445	Zaragoza	No representativo.	Inaccesible	05/05/2010
2132	Virga / Cabañas de Virtus	126	466	Burgos	No muestreado	Inaccesible	27/07/2010
2134	Hijedo / Bascones de Ebro	126	471	Palencia	No muestreado	Seco	27/07/2010
2137	Urquiola / Otxandio	126	488	Vizcaya	Marcas de crecidas de más de 2 m, el agua debió llegar al aparcamiento. Diatomeas sobre cantos y restos de ladrillo y tejas.		12/07/2010
2140	Gas / Jaca	126	510	Huesca	Diatomeas sobre bloques y cantos. Acumulación de troncos en el puente.		18/08/2010
2147	Juslapeña / Arazuri	126	547	Navarra	No muestreado	Seco	20/09/2010
2156	Pallerols / Noves de Segres	126	629	Lleida	Seco	Seco	25/08/2010
2179	Ésera / Camping Aneto	127	766	Huesca	Exceso de corriente, mucho sedimento fino. Diatomeas sobre bloques, óxido proviene de un barranco en el que había una antigua mina de hierro. No hay macrófitos por la naturaleza del sustrato.		23/08/2010
2190	Tirón / Leiva	112	805	Rioja (La)	Hay bombas de extracción de agua para regadío, han removido el sustrato. Diatomeas sobre bloques y cantos.		13/07/2010
2199	Escarra / Escarrilla	127	964	Huesca	Sigue la represa aguas abajo. Diatomeas sobre bloques, había Didymosphenia en los rápidos		18/08/2010
2214	Huerva / Tosos	112	836	Zaragoza	Caudal elevado, color gris claro. Diatomeas sobre bloques. No se toman macrófitos.		04/05/2010

CEMAS	Toponimia	Tipología	IdMasa	Provincia	Observaciones	Clasificación	Fecha
2215	Alegría / Matauco	112	244	Alava	Sólo se cogen diatomeas y macrófitos, sustrato inadecuado para macroinvertebrados. La muestra de diatomeas se toma sobre roca madre, ausencia de cantos adecuados.		14/07/2010
2238	Arroyo Omecillo / Salinas de Añana	112	1703	Alava	Restos de materiales de construcción, procedentes de la rehabilitación de las salinas. Aguas abajo del paso huele a vertido. Diatomeas sobre cantos		22/07/2010
2243	Noguera de Tor / Barruera	127	741	Lleida	Seco	Seco	24/08/2010
3000	Queiles / Aguas arriba de Tudela	109	98	Navarra	No muestreado. Cubierto de carrizo.	Inaccesible	05/07/2010
3001	Elorz / Pamplona	112	294	Navarra	Diatomeas sobre cantos, presentaban un leve sedimento margoso.		20/09/2010
3005	Llobregós / Ponts	109	147	Lleida	No muestreado	No representativo	26/08/2010
3006	Cervera / Cervera (aguas arriba)	109	149	Lleida	No muestreado. Cubierto de carrizo.	Inaccesible	26/08/2010
3007	Aragón / Gallipienzo (aguas abajo)	115	420	Navarra	No muestreado. Exceso de caudal.	No vadeable	20/09/2010
3008	Jalón / Campiel	116	444	Zaragoza	Muy turbio.Sustrato inadecuado para diatomeas. El conductivímetro no se estabilizaba.		03/06/2010
3011	Aguas Vivas / Aguas arriba azud de Blesa	112	333	Teruel	Se ha movido el punto, porque el punto original era el vaso del azud, en el que derivan toda el agua a una acequia.Sustrato inadecuado para la toma de muestras de diatomeas.		04/05/2010

Por su parte, en el **Cuadro 2** se resume la información relevante en cuanto a las características de los muestreos completados en el año 2010 (nº de muestreos completos y muestreos donde los cauces estaban secos, inaccesibles, crecidos o no representativos de las MAS). En los muestreos "completos" se tomaron muestras biológicas (macroinvertebrados, macrófitos y diatomeas, pudiendo faltar, no obstante, datos de alguno de estos indicadores), medidas físico-químicas in situ y datos hidromorfológicos (vegetación de ribera y estructura del hábitat fluvial).

De las 232 estaciones de muestreo a estudiar, no se pudo tomar muestra en 45 estaciones, las causas y el número de estaciones se resumen en el **Cuadro 3** y en la **Figura 3**.

CUADRO 2
RESUMEN DE LAS ESTACIONES MUESTREADAS EN EL AÑO 2010

CARACTERÍSTICAS	Nº MUESTRAS
Muestreo "completo"	180
Muestreo "parcial": diatomeas o macrófitos	3
Muestreo "no completo": seco / inaccesible / no representativo / crecidas/ otras causas	49
TOTAL	232

CUADRO 3
CAUSAS DE LAS ESTACIONES NO MUESTREADAS EN EL AÑO 2010

Causa	nº de estaciones
No vadeable	15
Río Inaccesible	14
Río seco	10
No representativo	8
Obras	2
Total	49

En las estaciones en las que se realizó un muestreo completo, se muestrearon parámetros biológicos (macroinvertebrados, macrófitos y fitobentos), físico-químicos (medidas *in situ* de temperatura, oxígeno disuelto, pH). Asimismo, se tomaron datos hidromorfológicos y se calcularon los índices QBR e IHF. Para el correcto cálculo del QBR, en caso de dudas de identificación se tomaron muestras de la vegetación de ribera. En cada estación de muestreo se completó una ficha de campo con los datos ambientales recogidos *in situ* y se realizó un completo reportaje fotográfico.

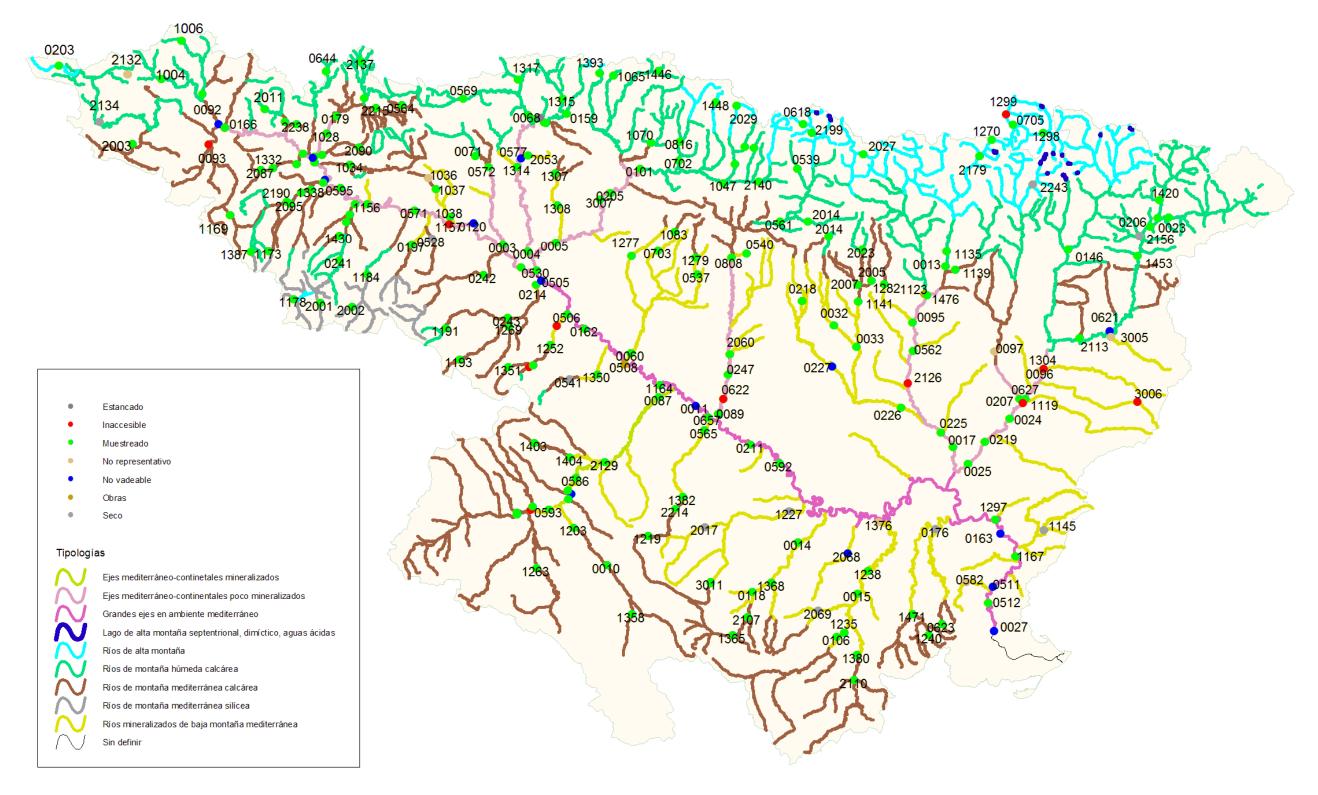


Figura 3. Estaciones muestreadas y causas de las no muestreadas en 2010.

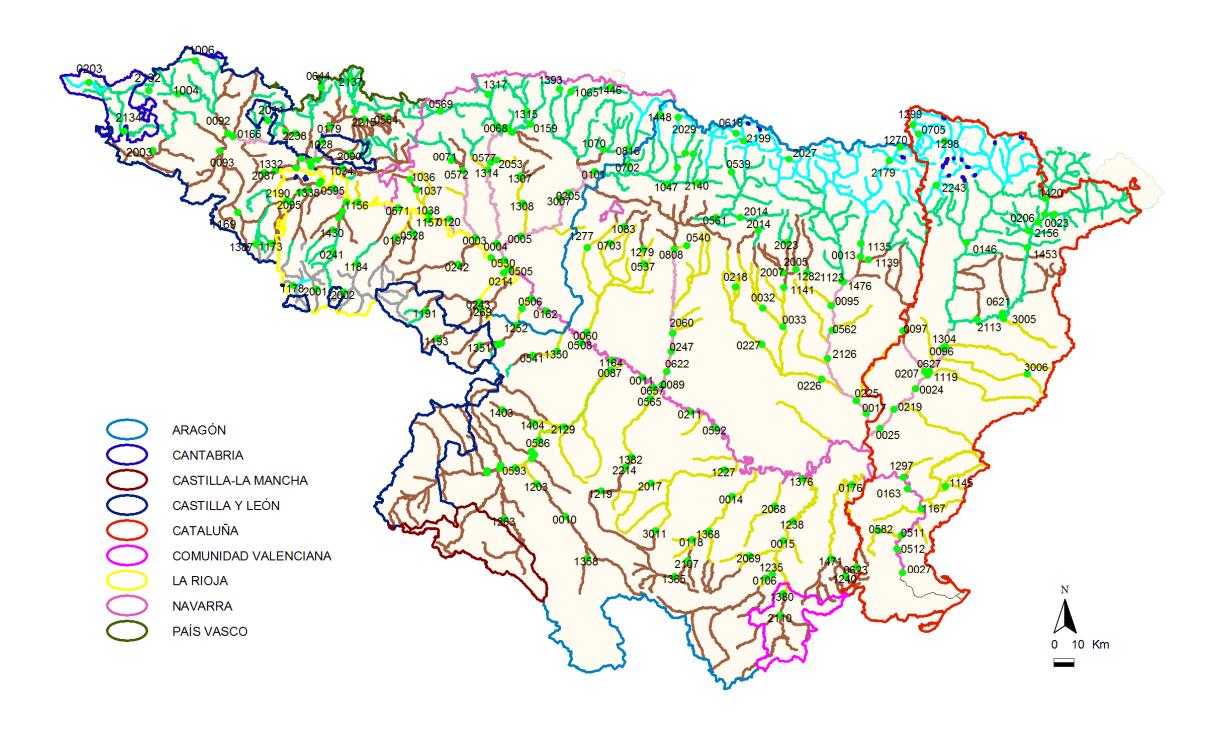
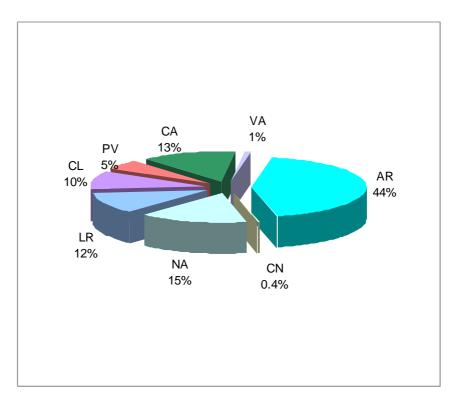



Figura 4. Distribución geográfica por comunidades autónomas de las estaciones muestreadas en 2010.

En general, el reparto de estaciones es proporcional al área que cada comunidad comparte con la demarcación hidrográfica del Ebro, como se puede observar en la **Figura 4.**

En la **Figura 5** se agrupan por comunidades autónomas las estaciones muestreadas. En ella, destaca que casi la mitad de las mismas (un 44%) se encuentran en territorio aragonés. Un 13% y un 15 % se localizan en Navarra y Cataluña respectivamente. Las siguientes comunidades en representación son Castilla y León y La Rioja con un 10 % y un 12 % del total cada una de ellas. El País Vasco acoge un 5% de estaciones. Por último, Cantabria y la Comunidad Valenciana, con el 0,4 % y 1 %, son las menos representadas.

Figura 5. Distribución por comunidades autónomas de las estaciones muestreadas en 2010 En cada caso se señala el número de estaciones. (AR: Aragón; CA: Cataluña; LR: La Rioja; CL: Castilla y León; CN: Cantabria; PV: País Vasco; VA: Comunidad Valenciana; NA: Navarra)

2.2 Trabajo de campo

Para la realización de los trabajos de campo en cada masa de agua, se ha seguido el protocolo interno de muestreo y de medida de parámetros previamente establecido en los trabajos de preparación de los muestreos y reuniones con especialistas, siguiendo las normas internacionales ISO/CEN.

Asimismo, previamente al inicio de los muestreos, se elaboró un Plan de Explotación que contenía una descripción detallada de los trabajos a desarrollar, asignación de personal y medios necesarios. De forma paralela, se elaboraron las rutas de muestreo y un calendario semanal estimado, en el que se propuso para cada día la ruta y el número de estaciones a muestrear, con el código identificativo de cada una de las estaciones. En la medida de lo posible, se intentó que las fechas de los muestreos fueran lo más cercanas posibles a las fechas de años anteriores.

Se resumen los pasos principales seguidos en los muestreos en ríos:

- Localización del punto de muestreo con GPS a partir de las coordenadas proporcionadas desde gabinete y ficha de campo con fotografía. En algunas ocasiones, después de evaluar las condiciones del punto (accesibilidad y representatividad) fue necesario reubicarlos evitando los cambios de masa de agua.
- Cada una de las estaciones de muestreo se identificó con el correspondiente código
 CEMAS de las Redes de la Confederación Hidrográfica del Ebro.
- Cada estación de muestreo estaba constituida por un tramo de longitud variable (50-100 m) en función de la diversidad de hábitats que presentase.
- Medida de parámetros físico-químicos in situ (conductividad, pH, oxígeno disuelto y temperatura) mediante electrodos y sondas estándar. Cada uno de los equipos de campo utilizados se calibraban al inicio de la jornada de trabajo y antes de cada medición en los puntos de muestreo. La metodología empleada para cada uno de ellos fue la electrometría.
- Recogida de muestras de macroinvertebrados, según metodología semi-cuantitativa para aplicación del índice IBMWP en laboratorio.
- Recogida de muestras de macrófitos e identificación in situ y en el laboratorio.
- Muestreo y conservación de diatomeas para su posterior identificación en laboratorio.

- Cálculo de los índices QBR e IHF y descripción de la estación con reportaje fotográfico.
- En cuanto a los protocolos empleados para el muestreo de invertebrados, macrófitos y fitobentos (diatomeas), se han seguido los procedimientos descritos en los cuadernos de la CHE: Metodología para el establecimiento del Estado Ecológico según la Directiva Marco del Agua (MMA-CHE 2005), disponibles en la Web*; así como las indicaciones de la referencias bibliográficas de cada uno de los índices aplicados. A continuación se explican los procedimientos de campo y laboratorio para cada uno de los indicadores.
- Desinfección según las indicaciones del Protocolo de la CHE (2007) de todos los materiales y equipos de muestreo utilizados en cada estación de muestreo para evitar la propagación del mejillón cebra (*Dreissena polymorpha*) y otros organismos.

^{*} http://oph.chebro.es/DOCUMENTACION/Calidad/dma/indicadoresbiologicos/protocolos.htm

A. Macroinvertebrados

La recolección de las muestras de macroinvertebrados se realizó por medio de una red de mano estándar conforme a lo especificado por la norma internacional EN 27828:1994, red que poseía una malla de Nytal de 500 µm de luz. Se han seguido las indicaciones del protocolo publicado por la Confederación Hidrográfica del Ebro para el análisis de invertebrados bentónicos (Confederación Hidrográfica del Ebro 2005) y la metodología propuesta por Jáimez-Cuellar et al. (2006) respecto a la toma y procesado de las muestras de macroinvertebrados. Se llevó a cabo en primer lugar un muestreo multihábitat de acuerdo al protocolo publicado para el índice IBMWP (Jáimez-Cuellar et al. 2002), pero teniendo en cuenta que el sustrato que se removía por delante de la red debía ser de 0,5 m (lo que se considera un kick). Se muestrearon todos los microhábitats diferentes encontrados en el tramo de muestreo, contabilizándose el número de kicks tomados en cada uno. Dicha muestra se examinaba en campo, separándose en un vial con etanol 96% al menos un ejemplar de cada uno de los taxones diferentes hallados, salvo en el caso de especies protegidas o sensibles, como por ejemplo los representantes de la familia Unionidae o de cangrejo autóctono (Austropotamobius pallipes), en los que sólo se anotaba su presencia, liberándose a continuación los ejemplares en el mismo tramo. Se daba por terminada esta parte del muestreo cuando nuevos kicks no aportaron taxones nuevos. El material recogido se almacenaba en botes de plástico de 500 ml, fijándose la muestra mediante la adición de formaldehído al 40%, hasta conseguir una dilución de la muestra del 4%, etiquetándose esos botes adecuadamente para su correcta identificación. Tras esto se recorría el tramo para calcular el porcentaje de extensión de cada microhábitat presente en el mismo. Se realizaron nuevos kicks en los microhábitats que en el primer muestreo hubieran resultado submuestreados, de manera que el número de kicks tomados finalmente en cada tramo fuera finalmente proporcional a su representación en el tramo. Los nuevos kicks tomados (denominados muestra de ajuste) se almacenaron y fijaron con el mismo método usado para los primeros kicks (muestra IBMWP).

Una vez en el laboratorio se combinaron las muestras de IBMWP y la de ajuste para el procesado de la muestra global. Se filtraba la muestra resultante a través de tres tamices, uno de 5 mm de luz, uno de 1 mm y uno de 0,5 mm, de manera que se obtuvieron tres fracciones (denominadas grande, mediana y pequeña), una en cada tamiz. De la fracción grande se clasificaron y contaron todos los ejemplares, incluyéndose también los taxones que se habían separado previamente en el muestreo de campo. La fracción mediana se vertía en una bandeja cuadriculada, de la cual se extraía el contenido de una de las cuadrículas elegida al azar (lo que se denomina alícuota). Se clasificaron y contaron todos los ejemplares de dicha

alícuota. Si el número de ejemplares hallados era de al menos 100, se procedía a estimar con ello la abundancia en la fracción total, mientras que si era inferior a 100 se procedía a analizar otra alícuota escogida al azar hasta llegar al menos a dicho número para estimar la abundancia. Posteriormente se analizaba el resto de la fracción, de cara a separar todos los taxones diferentes que no hubieran sido hallados en la alícuota analizada. Con la fracción fina se procedía de igual manera que con la fracción intermedia. Cada muestra fue analizada en su totalidad con la ayuda de un estereomicroscopio (x7-x45 aumentos) con luz incidente, clasificándose todos los individuos hallados hasta nivel de familia, ya que este es el nivel taxonómico requerido para calcular el índice IBMWP, y además representa un indicador fidedigno de las condiciones ambientales (Graça et al. 1995, Olsgard et al. 1998). Para la clasificación se utilizaron diferentes claves taxonómicas generales, principalmente las recogidas por Tachet et al. (1984, 2000), usando en algunos casos bibliografía específica para ciertos grupos taxonómicos.

Tras el análisis de las muestras y la determinación de los taxones presentes se calcularon las abundancias y los índices bióticos IBMWP e IASPT. El índice IBMWP es una adaptación a la fauna peninsular del índice BMWP desarrollado en el Reino Unido, y está basado en la presencia/ausencia de algunos grupos taxonómicos en la población de macroinvertebrados del tramo de río objeto de estudio. Cada uno de estos grupos tiene asignado un valor entero entre 1 y 10 (Tabla 1), según sus requerimientos en cuanto a la calidad de las aguas en las que viven sean menores o mayores. La suma de los valores de todos los grupos presentes en la muestra indicaría la calidad de las aguas en el punto, de acuerdo a los rangos marcados por el índice para cada clase de calidad (Tabla 33). Para el cálculo de estos índices en este estudio se tuvieron en cuenta los taxones y valores para cada taxón señalados por Alba-Tercedor et al. (2002) y Jáimez-Cuellar et al. (2002). Respecto a los rangos del índice para clase de calidad, no se utilizaron los rangos originales, sino que se aplicaron los rangos de Estado Ecológico señalados en el Anexo III de la Instrucción de Planificación Hidrológica de la Orden ARM/2656/2008 (para los ecotipos fluviales 109, 111, 112, 126 y 127), aplicándose, de acuerdo a lo especificado desde Confederación Hidrográfica del Ebro, los rangos marcados para el ecotipo 112 en aquellos ecotipos no recogidos en la citada Orden por no disponer de información de ese tipo de masas de agua (lo que en el caso de este estudio hace referencia a los ecotipos 115, 116 y 117). Estos rangos se muestran en la Tabla 33.

Familias	Puntuación
Siphlonuridae, Heptageniidae, Leptophlebiidae, Potamanthidae, Ephemeridae Taeniopterygidae, Leuctridae, Capniidae, Perlodidae, Perlidae, Chloroperlidae Aphelocheiridae Phryganeidae, Molannidae, Beraeidae, Odontoceridae, Leptoceridae, Goeridae, Thremmatidae, Calamoceratidae, Lepidostomatidae, Brachycentridae, Sericostomatidae Athericidae, Blephaceridae	10
Astacidae Lestidae, Calopterygidae, Gomphidae, Cordulegasteridae, Aeshnidae, Cordulidae, Libellulidae Psychomyiidae, Philopotamidae, Glossossomatidae	8
Ephemerellidae, Prosopistomatidae Nemouridae Rhyacophilidae, Polycentropodidae, Limnephilidae, Ecnomidae	7
Neritidae, Viviparidae, Ancylidae, Thiaridae, Unionidae, Ferrissidae Hydroptilidae Corophidae, Gammaridae, Atydae, Palaemonidae Platycnemidae, Coenagrionidae	6
Oligoneuriidae, Polymitarcidae Dryopidae, Elmidae, Hydrochidae, Hydraenidae, Hydropsychidae Tipulidae, Simuliidae Planariidae, Dendrocoelidae, Dugesiidae	5
Baetidae, Caenidae Haliplidae, Curculionidae, Chrysomelidae Tabanidae, Stratiomyidae, Empididae, Dolichopodidae, Dixidae, Ceratopogonidae, Limoniidae, Psychodidae, Sciomyzidae, Rhagionidae, Muscidae, Ptychopteridae Pyralidae Sialidae Piscicolidae Hidracarina	4
Mesoveliidae, Hydrometridae, Gerridae, Nepidae, Naucoridae, Pleidae, Veliidae, Notonectidae, Corixidae Helodidae (Scirtidae), Hydrophilidae, Hygrobiidae, Dytiscidae, Gyrynidae, Noteridae, Psephenidae Valvatidae, Hydrobiidae, Lymnaeidae, Physidae, Planorbidae, Bithyniidae, Sphaeridae Glossiphoniidae, Hirudidae, Erpobdellidae Asellidae, Ostracoda	3
Chironomidae, Culicidae, Ephydridae, Muscidae, Thaumaleidae	2
Syrphidae , Oligochaeta (todas las clases)	1

Tabla 1. Puntuaciones asignadas a las diferentes familias de macroinvertebrados acuáticos para la obtención del IBMWP.

B. Diatomeas

Para el protocolo de recogida de muestras es muy importante seguir las recomendaciones europeas (Norma UNE-EN 13946), que también se recogen en la Metodología para el establecimiento del Estado Ecológico según la Directiva Marco del agua publicada por el Ministerio de Medio Ambiente y la Confederación Hidrográfica del Ebro (2005).

En la medida de lo posible se eligió para muestrear una zona localizada en el centro del arroyo (con una profundidad de 30-50 cm), se evitaron las zonas sombreadas o con abundante cobertura forestal, así como las zonas que pudieron quedar temporalmente emergidas o que, debido a su carácter somero, pudieron ser visitadas por animales. La recolección se realizó en ambiente lótico, para evitar el efecto de la deriva y deposición de algas microscópicas, que podría interferir con los resultados. Los medios leníticos sólo se muestrearon en caso de que no existiera una representación de ambiente lótico. En este caso se seleccionó una superficie vertical para evitar el efecto de la acumulación de células muertas.

La superficie a muestrear fue del mismo tipo en todas las estaciones y en orden de idoneidad se pueden señalar: sustratos naturales estables > sustratos artificiales duros > sustratos vegetales.

Se evitó el muestreo de sustratos móviles (como limos y arenas) o de madera. En todos estos casos la naturaleza del sustrato favorece el desarrollo de especies saprófitas y/o la comunidad algal es poco representativa del tipo de agua.

La superficie que se muestreó es de aproximadamente 100 cm², es decir un cuadrado de 10 cm de lado. El muestreo se realizó en sustratos duros y lo más estable posible (bloques > cantos >guijarros). Se seleccionaron de manera aleatoria 5 réplicas. Si se utilizaron guijarros se seleccionaron 10. En todos los casos se raspó con un cepillo de dientes únicamente la cara superior de los sustratos.

En arroyos de curso lento, se agitaron las piedras seleccionadas en la zona de corriente para facilitar el desprendimiento de las especies accidentales, no características de ese tipo de hábitat, y la eliminación de los depósitos de materiales orgánicos o minerales, además de las células muertas.

El material recolectado se fijó en el campo con formol al 40 %. Es suficiente una concentración final de 4 %, pero este valor se revisó en función de la cantidad de materia orgánica introducida con las diatomeas. Finalmente se etiquetó convenientemente con la información de la estación.

Una vez en el laboratorio se procedió a una oxidación de la materia orgánica con peróxido de hidrógeno, a la eliminación de las sales con ácido clorhídrico y al montaje con la resina

Naphrax. Se siguieron en todo momento las recomendaciones de la norma UNE-EN 13946.

Las identificaciones se realizaron con ayuda de microscopios ópticos equipados, o no, con contraste de fases o interdiferencial y con un microscopio electrónico de barrido. Ambos tipos de microscopios estaban equipados con sistemas de digitalización de imágenes.

La observación de las muestras para la identificación específica se realizó, de forma rutinaria, previamente a los recuentos. De este modo se pudieron separar especimenes de identificación compleja para seguir otros procedimientos diferentes.

Para los recuentos de las muestras de diatomeas bentónicas se siguieron las indicaciones establecidas en la norma UNE-EN 14407. Los recuentos se llevaron a cabo en las preparaciones permanentes realizadas con NAPHRAX. Para que los recuentos resultaran lo más precisos posible, fue fundamental que se realizaran recorridos sobre el portaobjetos que siguieran una línea quebrada (**Figura 6**).

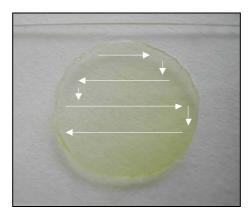


Figura 6. Recorridos sobre el portaobjetos para el recuento de diatomeas.

El recuento se hizo siguiendo una línea quebrada para no repetir, se tuvo cuidado y no se llegó al borde pues allí se producía la acumulación de las diatomeas. De cada preparación se hizo un inventario de las especies de diatomeas y se procedió al recuento de al menos 400 valvas, se observó la preparación con el mayor aumento posible (x 1000 inmersión). En el caso de que el recuento fuera inferior a 400 individuos se repitió la operación en cuantas preparaciones fuera preciso hasta completar ese número. En caso contrario el cálculo de los índices no resultaría todo lo preciso que debiera.

Para el cálculo de los índices IPS, IBD y CEE se utilizó el programa Omnidia V. 2009.

C. Macrófitos

De cara a la aplicación del índice IVAM (Moreno et al. 2006) se escogió un tramo de río suficientemente extenso para que incluyera la mayor variedad de hábitats posibles (pozas, rápidos, remansos, charcas marginales), siendo generalmente suficiente un tramo de 50-100 m. Se siguieron las indicaciones realizadas en el protocolo publicado por la Confederación Hidrográfica del Ebro para el estudio de macrófitos (Confederación Hidrográfica del Ebro 2005). El tramo seleccionado se recorrió en zigzag de una orilla a otra desde aguas abajo a aguas arriba, recogiendo todos los macrófitos existentes mediante su búsqueda sobre piedras en zonas reófilas y sobre tallos, troncos y raíces de helófitos en los márgenes del río. Las muestras de pecton (organismos íntimamente adheridos al sustrato con talos aplanados, laminares o esféricos, como algunas algas incrustantes) se podían recoger y fijar con el propio sustrato o bien se realizaba un raspado mediante el filo de una navaja o una pequeña cuchara. Las algas filamentosas que constituyen el plocon, así como las fanerógamas y carófitas, se recolectaron con la mano, utilizando una espátula cuchara si era necesario por estar fijas al sustrato. Los taxones hallados se identificaban en campo, siempre que era posible, anotando además la cobertura de cada taxón sobre el lecho del cauce. Para la posterior determinación precisa de los especimenes en laboratorio (mediante lupa y microscopio), se fijaban las muestras en bolsas de plástico con formol al 36-40 %, de forma que al final quedara una concentración de formol al 4 %. Dichas bolsas eran etiquetadas convenientemente para su correcta identificación en laboratorio.

En el laboratorio se procedió a verter la muestra en una batea blanca, para a continuación realizar una separación y aclarado con agua destilada de dicha muestra en pequeñas submuestras mediante placas de Petri de vidrio de 12 cm de diámetro. Sobre estas submuestras se realizó un análisis macroscópico a la lupa binocular (estereomicroscopio) y, para aquellos casos en los que era necesario, un análisis microscópico mediante la observación de preparaciones microscópicas con portas y cubres. De esta manera se confirmaron y determinaron correctamente los ejemplares recogidos en cada estación. En los casos en los que hubiera dudas sobre la correcta identificación del ejemplar se realizaron fotografías que eran enviadas a los especialistas correspondientes. Durante el proceso se anotaron los distintos taxones identificados en el correspondiente cuaderno de laboratorio, para posteriormente calcular el valor resultante del índice IVAM para cada estación analizada.

2.3 Análisis espacial de los datos y representación cartográfica

Para realizar el análisis espacial de los datos y presentarlos gráficamente en forma de mapas, se procesaron de forma que pudieran ser implementados en un sistema de información geográfica. Para este propósito se utilizó el programa ArcView 3.2. La cartografía se realizó conforme a lo establecido en la Instrucción de Planificación Hidrológica.

2.4 Tratamiento y análisis de datos

Los resultados de las variables fisicoquímicas, hidromorfológicas y biológicas se han resumido mediante histogramas de frecuencias, con cada muestra como réplica. También se añadieron los estadísticos descriptivos más importantes (media, desviación estándar, máximo, mínimo, tamaño muestral). Las distribuciones de las variables por tipos de ríos se ilustraron mediante diagramas de cajas y tablas de datos.

Por su parte, también se comprobó si existían diferencias significativas entre las diferentes tipologías de ríos del presente estudio. Para ello se realizó un análisis de la varianza mediante el test de Kruskal-Wallis, que permite revelar si una serie de muestras proceden de poblaciones iguales o diferentes. La hipótesis de nulidad es que las muestras proceden de poblaciones idénticas con respecto a los promedios; mientras que en la hipótesis alternativa es si existen diferencias entre los promedios de las variables en los tipos de ríos analizados. Esta prueba no paramétrica, posee la ventaja de que es posible comparar muestras de distintos tamaños como sucede en el presente estudio.

3. RESULTADOS

3.1 Consideraciones previas

En los siguientes apartados se describen los principales resultados obtenidos durante la campaña de muestreo de verano de 2010

Los resultados se estructuran de la siguiente forma:

- En un primer apartado, se incluyen los principales resultados relativos a los indicadores biológicos: los macroinvertebrados acuáticos, los macrófitos y las diatomeas.
- En el segundo apartado se exponen los resultados físico-químicos *in situ* e hidromorfológicos: un primer módulo corresponde a los resultados de las variables físico-químicas medidas en el campo
- Posteriormente se analizan los resultados de los índices hidromorfológicos (IHF y QBR).
- Finalmente se presentan los resultados de evaluación del Estado Biológico e Hidromorfológico en base a los diferentes indicadores utilizados para cada una de las redes estudiadas, Control Operativo y Referencia.

Los resultados de los indicadores biológicos, físico-químicos e hidromorfológicos, en forma de tablas, se incluyen en el **Anexo 1**

Asimismo, se presentan como anexos los análisis de resultados por comunidades autónomas, **Anexo 2**. En el **Anexo 3** se incluye el Informe resumen de la campaña de muestreos de verano.

3.2 Resultados biológicos. Macroinvertebrados, macrófitos y diatomeas

En el presente Informe se incluyen los resultados obtenidos en el análisis de las muestras de macroinvertebrados, vegetación macrofítica acuática y fitobentos (diatomeas) y la aplicación de los índices bióticos (IBMWP, IASPT, IVAM e IPS).

39

A partir de estos datos, en los siguientes apartados se resumen y sintetizan los resultados obtenidos para los indicadores y métricas de macroinvertebrados, macrófitos y diatomeas.

Asimismo, se realizaron contrastes no paramétricos de Kruskal-Wallis para testar diferencias biológicas entre los distintos tipos de ríos. Los resultados de estos análisis se sintetizan en la **Tabla 2**.

TABLA 2

TESTS DE KRUSKAL-WALLIS H POR TIPOS DE RÍOS

PARA LOS INDICADORES BIOLÓGICOS.

Se incluyen los valores de probabilidad p, en rojo y negrita aquellas diferencias significativas

Variable	Н	N	р
IBMWP	57,12	180	0,000
NFAM IBMWP	35,43	180	0,000
NFAM	28,39	180	0,000
IASPT	83,80	180	0,000
IVAM	57,42	152	0,000
IPS	36,86	139	0,000

3.2.1 Macroinvertebrados bentónicos

El término zoobentos se refiere a la fauna de invertebrados que habita los sustratos sumergidos de los medios acuáticos, entre los que se encuentran los macroinvertebrados, que son los invertebrados de un tamaño relativamente grande (visibles al ojo humano), no muy inferiores a 0,5 mm pero habitualmente mayores de 3 mm.

Comprenden principalmente artrópodos (insectos, arácnidos y crustáceos) y dentro de éstos dominan los insectos (en especial sus formas larvarias); también se encuentran oligoquetos, hirudíneos y moluscos (y con menor frecuencia celentéreos, briozoos o platelmintos). Los macroinvertebrados son el grupo dominante en los ríos y también se encuentran en el litoral y fondos de lagos y humedales.

Los invertebrados bentónicos, especialmente los macroinvertebrados, son uno de los grupos más ampliamente utilizados como indicadores de la calidad del agua. Esto se debe a que integran muchas de las cualidades que se esperan de un indicador. Entre éstas destaca su elevada diversidad y que estén representados diferentes taxones, con requerimientos

ecológicos diferentes relacionados con las características hidromorfológicas (velocidad del aguas, sustrato), físico-químicas y biológicas del medio acuático.

En el ámbito de aplicación de la DMA, los invertebrados bentónicos se consideran útiles para la detección y seguimiento de los siguientes tipos de presiones:

- Presiones físico-químicas relacionadas con:
 - Contaminación térmica
 - o Cambios en la mineralización del agua
 - Contaminación orgánica
 - o Eutrofización
 - Contaminación por metales u otros contaminantes
- Presiones hidromorfológicas relacionadas con:
 - Alteración del régimen de caudal / tasa de renovación
 - Alteración de la morfología del lecho fluvial

Los invertebrados bentónicos indican alteraciones a medio y largo plazo, ya que sus especies poseen ciclos de vida de entre menos de un mes hasta más de un año. Su valor indicador abarca un ámbito temporal intermedio que complementa el de otros elementos biológicos con tiempos de respuesta más cortos, como el fitobentos, o más largos, como los peces.

El índice seleccionado para la evaluación del estado ecológico utilizando los macroinvertebrados ha sido el IBMWP (Iberian Monitoring Working Party) (Alba-Tercedor et al., 2004).

A) IBMWP (Iberian Biological Monitoring Working Party)

Finalmente no se pudieron tomar muestras de macroinvertebrados en 52 estaciones, de las cuales 50 pertenecían a la red de Control operativo y 2 se encuadraban en la red de Referencia. Fue el indicador biológico que tuvo una mayor aplicabilidad. Los valores hallados para el índice IBMWP oscilaron entre el valor 33 hallado en la estación CEMAS 1203 (Río Jiloca en Morata de Jiloca) y el valor 316 hallado en la CEMAS 1065 (Río Urrobi en Espinal-Puente Carretera a Garralda), con una media de 139. Casi dos terceras partes de de los

puntos analizados en la campaña del año 2010 tuvieron valores del IBMWP dentro del rango comprendido entre 80 y 180. En la **Figura 7**, se presenta la distribución de frecuencias de los datos obtenidos.

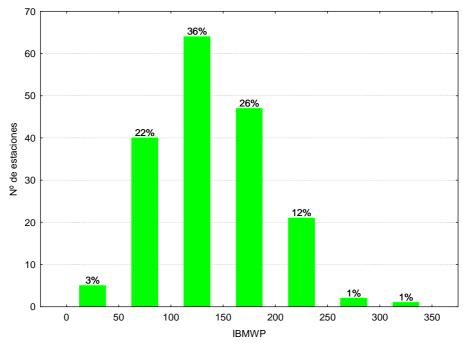


Figura 7. Distribución de frecuencias de los valores del IBMWP

Las diferencias entre tipos de ríos fueron significativas (**Tabla 2**), con los tipos 111,112, 126 y 127 (ríos de montaña) destacando por encima de los demás tipos (**Tabla 3**; **Figura 8**). Los tipos 109,115, 116 y 117, tramos bajos y eje del Ebro, presentaron los valores más bajos.

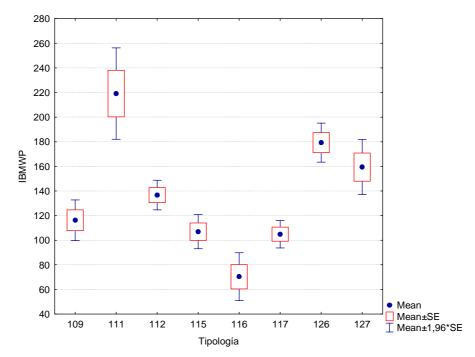


Figura 8. Valores medios del índice IBMWP por tipos de ríos

TABLA 3

Valor medio del IBMWP, desviación estándar (SD), valores máximo y mínimo, y número de casos (N) para los diferentes tipos de ríos muestreados en 2010

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	31	116.23	38.00	197.00	46.85
111	Ríos de montaña mediterránea silícea	6	219.17	158.00	280.00	46.44
112	Ríos de montaña mediterránea calcárea	61	136.67	33.00	234.00	47.74
115	Ejes mediterráneo-continentales poco mineralizados	24	106.88	56.00	172.00	34.67
116	Ejes mediterráneo-continentales mineralizados	3	70.33	52.00	86.00	17.16
117	Grandes ejes en ambiente mediterráneo	8	104.88	73.00	119.00	16.02
126	Ríos de montaña húmeda calcárea	37	179.32	80.00	316.00	49.37
127	Ríos de Alta Montaña	10	159.40	103.00	213.00	36.20

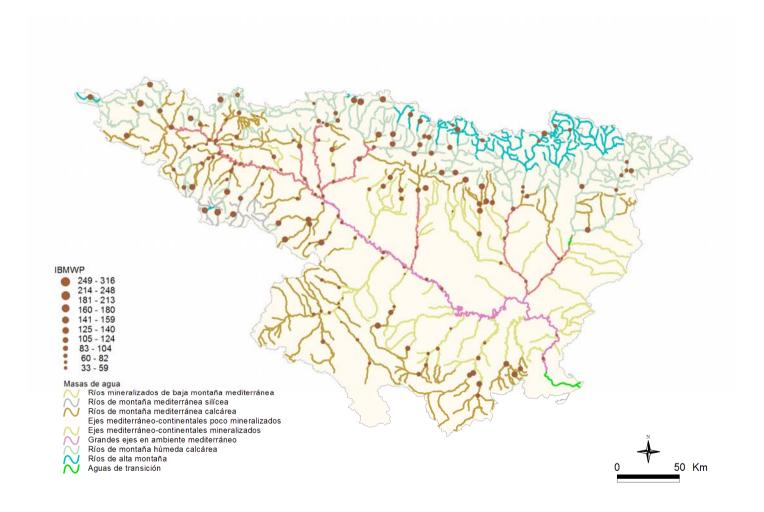


Figura 9. Distribución espacial de los valores de IBMWP en la Cuenca del Ebro 2010

En la **Figura 9** se observa que las estaciones de ríos de montaña, que en algunos casos corresponden a la red de referencia, obtuvieron los valores de IBMWP más altos, ya que presentan menos impactos. Por contra los valores más bajos del índice se obtuvieron en los tramos medios y bajos que sufren mayores presiones, de tipo agrícola, urbano o industrial y pertenecen a la red de control operativo.

B) IASPT (Iberian Average Score per Taxon)

Los valores del índice IASPT oscilaron entre los 3,45 puntos obtenidos en la localidad 0218 en el río Isuela en Pompenillo, que está afectada por el vertido de la EDAR de Huesca, hasta los 6,56 de la estación 1173 que se encuentra en el río, de alta montaña, Tirón aguas arriba de Fresneda de la Sierra. Un 47% de las muestras presentaron valores por superiores a 5 (**Figura 10**). La media fue de 4,94 puntos.

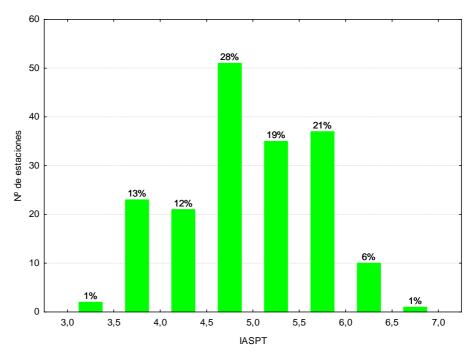


Figura 10. Distribución de frecuencias del índice IASPT durante la campaña de muestreo de 2010

Las diferencias entre tipos de ríos fueron significativas (**Tabla 2**), con los tipos 111, 126 y 127 (ríos de montaña) presentando valores por encima de los demás tipos (**Tabla 4**; **Figura 11**). Los tipos 109 y 116 presentaron los valores más bajos.

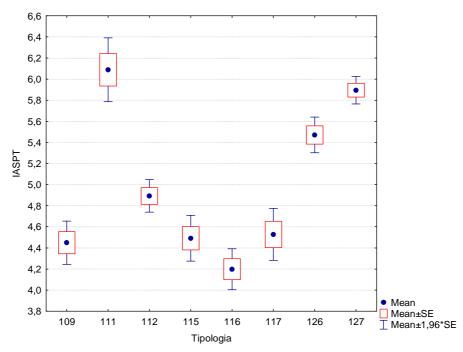


Figura 11. Distribución del índice IASPT por tipos de ríos.

TABLA 4

Valor medio del IASPT, desviación estándar (SD), valores máximo y mínimo, y número de casos (N) para los diferentes tipos de ríos muestreados en 2010

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	31.0	4.45	3.45	5.81	0.58
111	Ríos de montaña mediterránea silícea	6.0	6.09	5.53	6.56	0.38
112	Ríos de montaña mediterránea calcárea	61	4.89	3.54	6.50	0.61
115	Ejes mediterráneo-continentales poco mineralizados	24	4.49	3.50	5.45	0.54
116	Ejes mediterráneo-continentales mineralizados	3	4.20	4.00	4.30	0.17
117	Grandes ejes en ambiente mediterráneo	8	4.53	3.91	4.92	0.35
126	Ríos de montaña húmeda calcárea	37	5.47	3.81	6.30	0.52
127	Ríos de Alta Montaña	10	5.90	5.56	6.26	0.21

Al igual que para el índice IBMWP, se observó que los valores valores más elevados correspondieron a estaciones de la red de referencia situadas en tramos de cabecera, donde las presiones son bajas o insignificantes, **Figura 12**.

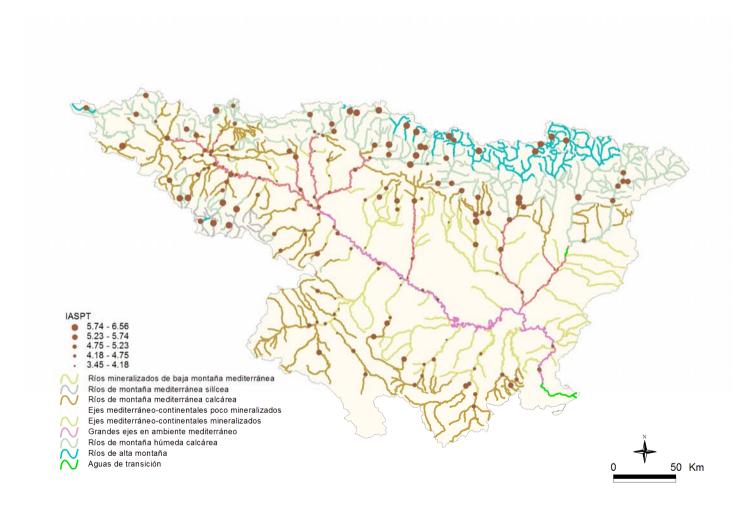


Figura 12. Distribución espacial de los valores de IASPT en la Cuenca del Ebro 2010

C) NTAX IBMWP (nº de Taxones IBMWP)

La riqueza del ecosistema fluvial, evaluada mediante el número de familias utilizadas en el cálculo del IBMWP (NTAX IBMWP), por lo general fue elevada.

Los valores oscilaron entre las 8 familias recogidas en la localidad 1203 (río Jiloca en Morata de Jiloca) hasta las 54 de la estación 10965 (río Urrobi en el Pte. de la Cta. a Garralda). Un 81 % de las muestras presentaron valores por encima de 20 familias (**Figura 13**), la media de todas las muestras fue de 27 familias. En la cuenca se observaron 101 familias diferentes.

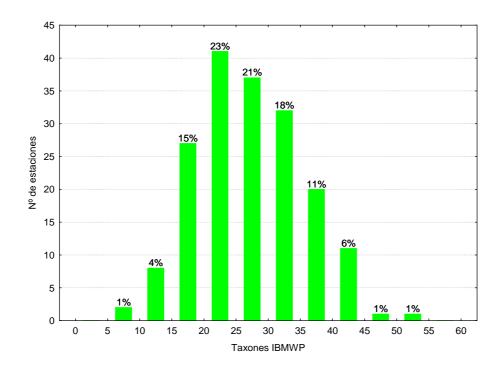


Figura 13. Distribución del Nº de Taxones (NTAX IBMWP) durante la campaña de muestreo de 2010

Los valores elevados de los tipos de ríos de montaña 111, 112, 126 y 127 provocaron que las diferencias entre tipos de ríos fueran significativas (**Tabla 2**). Los resultados quedan resumidos en la **Tabla 5** y en la **Figura 14**.

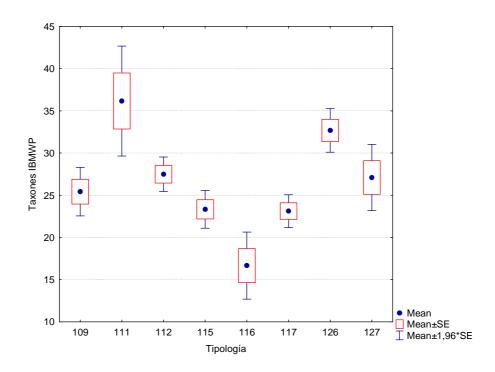


Figura 14. Distribución del número de taxones (NTAX IBMWP) por tipos de ríos

El tipo 116 presentó los valores más bajos. El tipo 111 presentó el mínimo y la media más elevados, al tratarse de ríos de montaña con pocos impactos están mejor conservados.

TABLA 5

Valor medio del número de taxones (NTAX IBMWP), desviación estándar (SD), valores máximo y mínimo, y número de casos (N) para los diferentes tipos de ríos muestreados en 2010

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	31	25.42	10	40	8.15
111	Ríos de montaña mediterránea silícea	6	36.17	25	45	8.13
112	Ríos de montaña mediterránea calcárea	61	27.49	8	42	8.12
115	Ejes mediterráneo-continentales poco mineralizados	24	23.33	15	35	5.58
116	Ejes mediterráneo-continentales mineralizados	3	16.67	13	20	3.51
117	Grandes ejes en ambiente mediterráneo	8	23.13	17	26	2.80
126	Ríos de montaña húmeda calcárea	37	32.68	17	54	8.01
127	Ríos de Alta Montaña	10	27.10	17	35	6.31

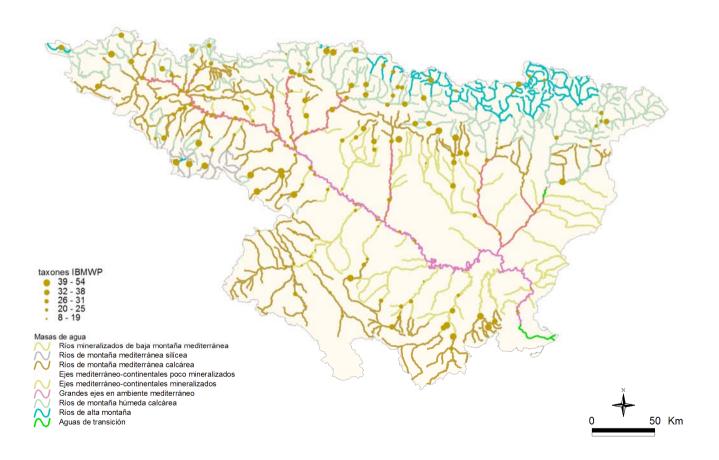


Figura 15. Distribución espacial del nº de familias del IBMWP en la Cuenca del Ebro 2010

Como ya se ha comentado con anterioridad, en la **Figura 15** se puede observar que la mayor riqueza de familias del IBMWP se localiza en las estaciones de referencia de los tramos de cabecera.

D) NTAX MAI (Nº de Taxones Totales de Macroinvertebrados)

Los valores oscilaron entre las 8 familias recogidas en la localidad 0218 (río Isuela en Pompenillo) hasta las 57 de la estación 1065 (río Urrobi en el Pte. de la Cta. a Garralda). Un 84 % de las muestras presentaron valores por encima de 20 familias. (**Figura 16**), la media de todas las muestras fue de 28 familias. En las muestras analizadas se hallaron un total de 120 familias diferentes.

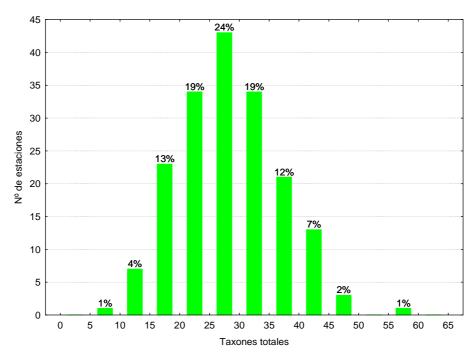


Figura 16. Distribución del Nº de Taxones Totales (NTAX MAI) durante la campaña de muestreo de 2010

Las diferencias entre tipos de ríos resultaron significativas (**Tabla 2**), con los tipos 111, 112, 126 y 127 (ríos de montaña) destacando por encima de los demás tipos (**Tabla 6**; **Figura 17**).

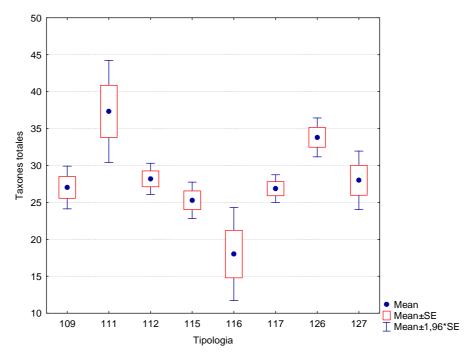


Figura 17. Distribución del número de Taxones totales (NTAX MAI) por tipos de ríos

El tipo 116 presentó los valores más bajos. El tipo 111 presentó el mínimo y la media más elevados, al tratarse de estaciones situadas en ríos de montaña con pocos impactos están mejor conservados y presentan mayor riqueza.

TABLA 6

Valor medio del número de Taxones totales (NTAX MAI), desviación estándar (SD), valores máximo y mínimo, y número de casos (N) para los diferentes tipos de ríos muestreados en 2010

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	31	27.03	11	43	8.20
111	Ríos de montaña mediterránea silícea	6	37.33	25	47	8.64
112	Ríos de montaña mediterránea calcárea	61	28.20	8	45	8.44
115	Ejes mediterráneo-continentales poco mineralizados	24	25.29	16	39	6.15
116	Ejes mediterráneo-continentales mineralizados	3	18.00	13	24	5.57
117	Grandes ejes en ambiente mediterráneo	8	26.88	21	30	2.70
126	Ríos de montaña húmeda calcárea	37	33.81	19	57	8.16
127	Ríos de Alta Montaña	10	28.00	17	37	6.38

En la **Figura 18**, se representa gráficamente la distribución espacial en la Cuenca de los valores del número total de familias de macroinvertebrados presentes en cada una de las estaciones. Los comentarios del apartado anterior sirven para este.

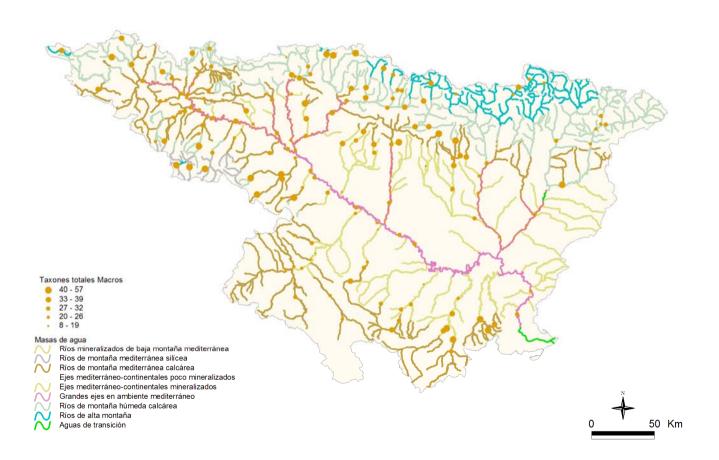


Figura 18. Distribución espacial del nº de familias totales en la Cuenca del Ebro 2010

3.2.2 Macrófitos: IVAM (Índice de Vegetación Acuática Macroscópica)

El uso de los macrófitos como indicadores del estado ecológico está claramente señalado en la DMA, y procede de experiencias realizadas, en Europa (p. ej. Francia y Reino Unido), en el marco de la vigilancia de la calidad de las aguas en aplicación de otras directivas europeas. En España, las experiencias con indicadores basados en macrófitos se limitan en muchos casos al ámbito de la investigación, y éstos todavía no se habían incluido, hasta ahora, en las redes de control de calidad. En la Cuenca del Ebro se llevan realizando estudios de macrófitos desde el año 2006.

En el marco de la aplicación de la DMA, los macrófitos se consideran útiles para la detección y el seguimiento de las presiones físico-químicas que produzcan:

- Reducción de la transparencia del agua.
- Variación de la mineralización
- Eutrofia

Los macrófitos también son sensibles a las presiones hidromorfológicas que produzcan:

- Variaciones del régimen de caudal, continuidad del río y características morfológicas del lecho en ríos
- Variación del nivel del agua en lagos o cambios del período de inundación en humedales
- Variación de las características morfológicas del vaso en lagos.

En el análisis del valor indicador de los macrófitos hay que tener en cuenta los siguientes aspectos:

Hidrófitos (plantas acuáticas: microalgas, briófitos y cormófitos)

Son sensibles a los cambios de calidad físico-química (nutrientes, mineralización, temperatura, transparencia), al igual que las microalgas; no obstante a diferencia de éstas tienen un tiempo de respuesta mayor: son indicadores de cambios a medio y largo plazo. La comunidad de hidrófitos presente en una ubicación refleja las condiciones de calidad existentes durante los

últimos meses o incluso años. La desaparición de una especie de un sistema acuático (especialmente las de pequeño tamaño) puede ser un hecho altamente significativo.

Reflejan las alteraciones hidromorfológicas relacionadas con la estabilización del caudal en los ríos. La respuesta suele ser el aumento de la cobertura de las especies.

No todos los hidrófitos tienen el mismo valor indicador. El nivel taxonómico de especie es esencial para poder utilizarlos como indicadores. Su utilidad a nivel de género queda reducida al valor de presencia o ausencia.

El valor indicador de la abundancia (biomasa) está influido por variaciones anuales e interanuales, luego su uso como indicador del estado ecológico está limitado y en todo caso debe acotarse dentro de cada tipo de masas de agua, y analizarse para un período de tiempo de varios años.

Helófitos (plantas anfibias, con la parte inferior sumergida en el agua)

Son buenos indicadores de la estructura de las riberas fluviales y lacustres, y también son sensibles a cambios en la calidad del agua (mineralización y nutrientes), aunque de forma menos acusada que los hidrófilos.

El índice que se seleccionó para la evaluación del estado ecológico utilizando los macrófitos fue el IVAM (Índice de Vegetación Acuática Macroscópica) (Moreno et al. 2006).

A.) Nº de géneros de macrófitos

El número de géneros encontrados en las diferentes estaciones de muestreó osciló desde los 2 géneros hallados en la estación 0574 localizada en el río Najerilla aguas abajo de la localidad de Nájera, hasta los 25 de la estación de referencia 1380 situada en el río Bergantes en Mare de Deu de la Balma. La distribución de frecuencias de los géneros hallados en los diferentes ríos muestreados se presenta en la **Figura 19**, en ella cabe destacar que un 12 % de las estaciones tuvieron 12 géneros. La media de géneros para el total de las estaciones fue de 11 macrófitos. Se observaron un total de 58 géneros diferentes.

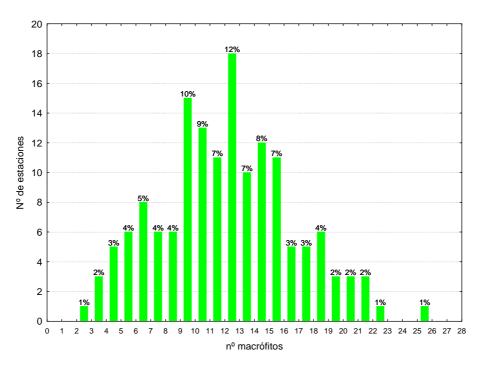


Figura 19. Distribución del Nº de géneros de macrófitos durante la campaña de muestreo de 2010

Al analizar los datos por las diferentes tipologías presentes en la cuenca, **Figura 20, Tabla 7**, se observó que el mayor número de géneros se obtuvo en los tipos de alta montaña, 126 y 109, seguidos por el tipo 112, 117 y el 127. La mayor dispersión de los datos se observó en el tipo 112.

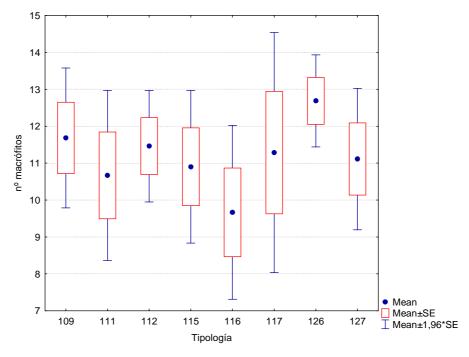


Figura 20. Distribución del número de géneros de macrófitos por tipos de ríos

TABLA 7

Valor medio del número de géneros totales, desviación estándar (SD), valores máximo y mínimo, y número de casos (N) para los diferentes tipos de ríos muestreados en 2010

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	22	11.7	4	21	4.5
111	Ríos de montaña mediterránea silícea	6	10.7	5	13	2.9
112	Ríos de montaña mediterránea calcárea	50	11.5	2	25	5.4
115	Ejes mediterráneo-continentales poco mineralizados	20	10.9	4	20	4.7
116	Ejes mediterráneo-continentales mineralizados	3	9.7	8	12	2.1
117	Grandes ejes en ambiente mediterráneo	7	11.3	5	17	4.4
126	Ríos de montaña húmeda calcárea	35	12.7	5	21	3.8
127	Ríos de Alta Montaña	9	11.1	4	14	2.9

En la **Figura 21**, se observa que las estaciones que presentaron mayor número de macrófitos correspondieron, por lo general, a zonas montañosas del Pirineo de la Sierra de Guara y del Maestrazgo. Tramos todos ellos de difícil acceso, con bajas presiones y bien conservados.

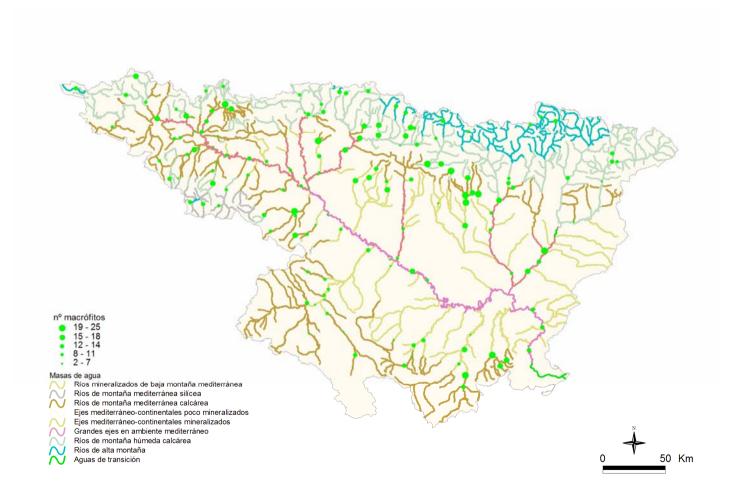


Figura 21. Distribución espacial del nº géneros de macrófitos en la Cuenca del Ebro 2010

B.) IVAM (Índice de Vegetación Acuática Macroscópica)

El índice IVAM, se aplicó en un total de 152 estaciones de las 232 estaciones en las que estaba planificado el muestreo. Las principales causas que impidieron el muestreo de los macrófitos fueron la turbidez y la profundidad. En la **Figura 22** se puede observar la distribución de frecuencias de los valores índice IVAM, el 54 % de las estaciones obtuvo valores superiores a 5. Los valores oscilaron entre los 2 puntos, obtenidos en la estación 0593 Jalón en Terrer, hasta los 7,00 de la estación 0618 localizada en el río Gállego en el vaso colmatado del Embalse del Gállego. La media fue de 5 puntos.

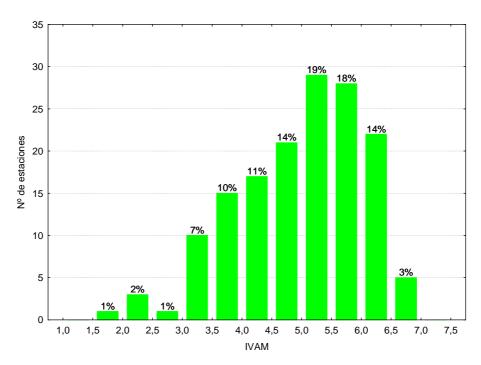


Figura 22. Distribución de frecuencias del índice IVAM durante la campaña de muestreo de 2010

Las diferencias entre tipos de ríos también fueron significativas (**Tabla 2**), con los tipos 127, 111 y 126 (ríos de montaña) destacando por encima de los demás tipos (**Tabla 8**; **Figura 23**). Las estaciones de los tipos 115 y 117 presentaron los valores más bajos del índice.

TABLA 8

Valor medio del índice IVAM, desviación estándar (SD), valores máximo y mínimo, y número de casos (N) para los diferentes tipos de ríos muestreados en 2010

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	22	4.69	2.00	6.42	1.19
111	Ríos de montaña mediterránea silícea	6	5.96	5.48	6.57	0.43
112	Ríos de montaña mediterránea calcárea	50	4.93	2.40	6.51	0.89
115	Ejes mediterráneo-continentales poco mineralizados	20	4.32	2.40	6.03	0.86
116	Ejes mediterráneo-continentales mineralizados	3	4.64	4.24	4.94	0.36
117	Grandes ejes en ambiente mediterráneo	7	3.50	3.08	4.08	0.39
126	Ríos de montaña húmeda calcárea	35	5.55	2.35	6.43	0.74
127	Ríos de Alta Montaña	9	6.25	5.26	7.00	0.62

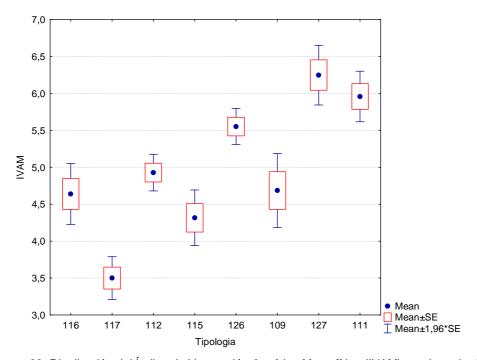


Figura 23. Distribución del Índice de Vegetación Acuática Macrofítica (IVAM) por tipos de ríos

Los resultados del índice IVAM obtenidos durante los muestreos del verano de 2010, se representan cartográficamente en la siguiente página, **Figura 24**. Al igual que en el apartado anterior, destacan las estaciones de las zonas montañosas del Pirineo, de la Sierra de Guara y del Maestrazgo, al igual que algunas estaciones de tramos medios bien conservados.

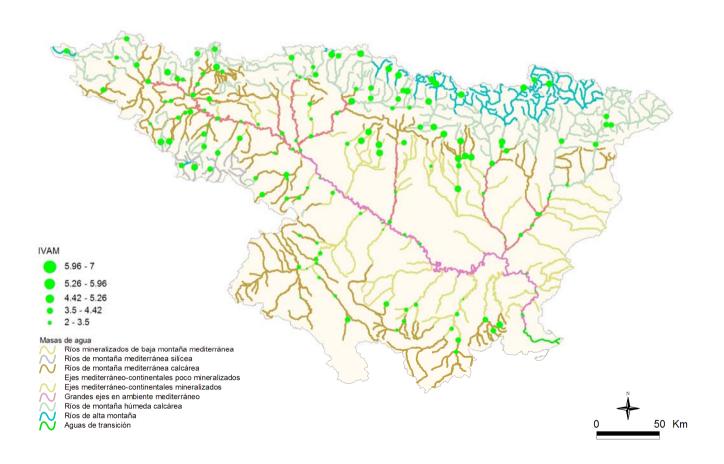


Figura 24. Distribución espacial del IVAM en la Cuenca del Ebro 2010

3.2.3 Fitobentos (diatomeas): IPS (Índice de Poluosensibilidad Específica)

El anexo V de la DMA, establece el uso de fitobentos como uno de los posibles indicadores biológicos incluidos entre la flora acuática. El fitobentos se refiere a los vegetales que viven asociados a cualquier sustrato del fondo en los ecosistemas acuáticos, e incluye cianobacterias, algas microscópicas (microalgas), microalgas y macrófitos.

Entre los grupos de algas que colonizan los sustratos sumergidos, se encuentran las diatomeas, que son microalgas bentónicas de aguas corrientes y de lagos. Su uso para evaluar la calidad de las aguas es una práctica habitual en muchos países europeos.

En el marco de la aplicación de la DMA las microalgas se consideran útiles para la detección y seguimiento de las presiones debidas a:

- Eutrofización
- Incrementos de materia orgánica
- Salinidad
- Acidificación

Las microalgas son productores primarios y como tales responden a las variaciones de los nutrientes (especialmente del fósforo) en el agua; también pueden comportarse como organismos heterotróficos en aguas con aumento de materia orgánica.

Las microalgas bentónicas responden al aumento de nutrientes en el agua mediante cambios en su composición, que en algunos casos suponen la disminución de la diversidad, y el aumento de la biomasa; así cuando la masa de agua se eutrofiza, los sustratos aparecen recubiertos de patinas de algas verdes o pardas.

Respecto a la acidificación, ésta no es problema en la mayor parte de las cuencas ibéricas, cuyas aguas están tamponadas.

Las microalgas bentónicas son poco sensibles a las presiones hidromorfológicas (alteraciones del régimen hidrológico, continuidad del río y condiciones morfológicas del lecho), por lo que no se recomienda su uso para la detección de dichas presiones.

El índice seleccionado para la evaluación del estado ecológico utilizando las diatomeas ha sido el IPS (Índice de Poluosensibilidad Específica) (Cemagref, 1982), que es considerado

como el que mejor responde a las poblaciones de diatomeas en la Cuenca del Ebro y el que se indica como oficial en la Instrucción de Planificación Hidrológica, IPH.

El índice IPS, se aplicó en un total de 139 estaciones de las 232 en las que se tenía previsto muestrear. En el resto no se pudo tomar muestra de diatomeas, bien por una elevada turbidez del agua, o a la ausencia de un sustrato adecuado libre de sedimentos y algas filamentosas, esto ocurrió principalmente en los tramos medios y bajos de los ríos.

El índice IPS osciló entre los 4,70 puntos, obtenidos en la localidad 2140 (Río Gas en Jaca) hasta el máximo de 20 puntos que se obtuvo en varias estaciones, como p.ej. en las estaciones 1387 situada en el río Urbión en la Sta. Cruz del Valle y en la 2027 en el río Arazas en la Pradera de Ordesa. En la **Figura 25**, se presenta gráficamente la distribución de frecuencias de los datos del índice IPS obtenidos, destaca que un 42 % de las estaciones obtuvo valores superiores a 18 puntos. La media de las estaciones fue de 15,9 puntos.

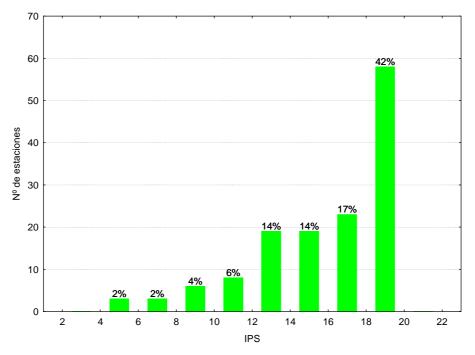


Figura 25. Distribución de frecuencias del índice IPS durante la campaña de muestreo de 2010

TABLA 9

Valor medio del índice IPS, desviación estándar (SD), valores máximo y mínimo, y número de casos (N) para los diferentes tipos de ríos muestreados en 2010

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	22	14.86	5.80	19.70	4.34
111	Ríos de montaña mediterránea silícea	6	19.48	18.60	20.00	0.57
112	Ríos de montaña mediterránea calcárea	47	15.38	5.90	19.90	3.61
115	Ejes mediterráneo-continentales poco mineralizados	17	13.46	8.40	19.70	3.15
116	Ejes mediterráneo-continentales mineralizados	1	13.10	13.10	13.10	
117	Grandes ejes en ambiente mediterráneo	1	14.10	14.10	14.10	
126	Ríos de montaña húmeda calcárea	35	17.29	4.70	20.00	3.19
127	Ríos de Alta Montaña	10	18.75	16.50	20.00	1.10

Las diferencias entre tipos de ríos fueron significativas (**Tabla 2**), con los tipos 111, 126 y 127 (ríos de montaña) destacando por encima de los demás tipos (**Tabla 9**; **Figura 26**). Las estaciones de los tipos 115 y 116 presentaron los valores más bajos del índice. La mayor variabilidad de observó en el tipo 109.

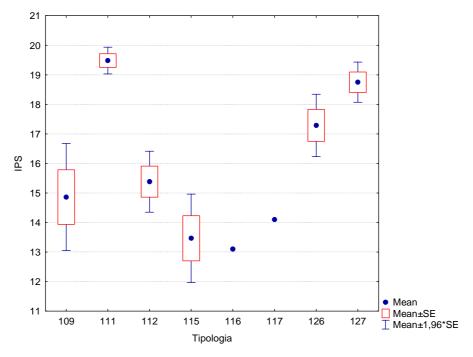


Figura 26. Valores medios del índice IPS por tipos de ríos

En la **Figura 27**, de la página siguiente, se representa gráficamente la distribución espacial en la Cuenca del Ebro de los valores del índice IPS. Destacan los valores elevados de las estaciones de referencia situadas en zonas de montaña.

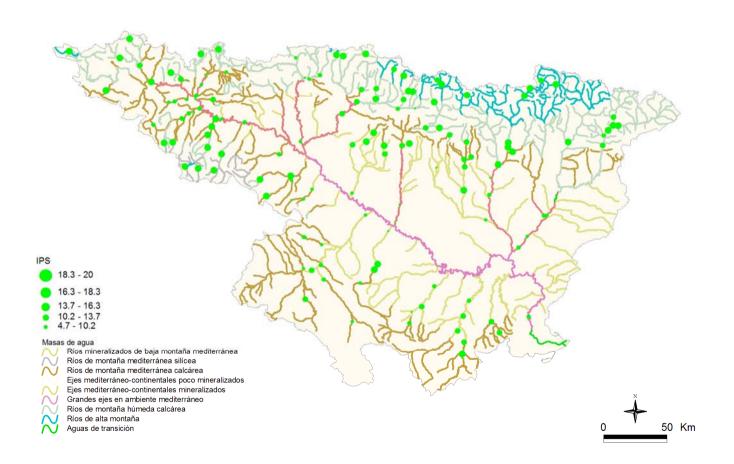


Figura 27. Distribución espacial del IPS en la Cuenca del Ebro 2010

3.3 Resultados físico-químicos

En el **Anexo 1** se incluyen los resultados obtenidos para los parámetros físico-químicos e hidromorfológicos tomados *in situ*, obtenidos durante los muestreos de 2010.

En los siguientes apartados se sintetizan los resultados obtenidos y se realizan comentarios sobre cada uno de los parámetros físico-químicos analizados. Asimismo, se realizaron contrastes no paramétricos de Kruskal-Wallis para testar diferencias entre distintos tipos de ríos. Los resultados de estos análisis se sintetizan en la **Tabla 10**.

TABLA 10

Tests de Kruskal-Wallis H por TIPOS

En rojo y negrita aquellas diferencias significativas (p < 0.05)

Variable	Н	N	p
Ta (°C)	51,20	183	0,000
рН	16,14	171	0,000
Conductividad (µS/cm)	94,14	180	0,000
O ₂ disuelto (mg/l)	21,70	181	0,002

Los comentarios relativos a la **Tabla 10** se realizan, para cada parámetro, en los apartados siguientes. Los diagramas de cajas muestran el comportamiento de las diferentes variables en las diferentes tipologías de ríos. Estos resultados se acompañan de tablas resumen de los principales estadísticos observados (número de casos o N, media, desviación estándar, máximo –Max- y mínimo –Min) para cada variable. Asimismo, las variables han sido cartografiadas para interpretar su dimensión espacial en la Cuenca del Ebro durante la presente campaña de muestreo.

3.3.1 Temperatura

Las temperaturas oscilaron entre los 7,58 °C medidos el día 5 de mayo en la estación 1219 (río Huerva en Cerveruela) hasta los 24,90 °C registrados el 8 de agosto en la localidad 1047 (río Aragón en Puente la Reina de Jaca). La temperatura media, para el conjunto de estaciones, fue de 17,90 ° C.

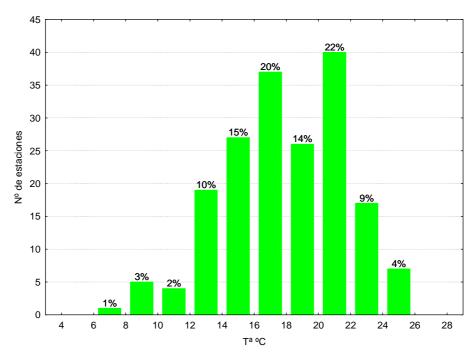


Figura 28. Distribución de frecuencias de la temperatura del agua (Ta, °C)

Las temperaturas fueron significativamente diferentes entre tipos de ríos (**Tabla 10**; **Figura 29**; **Tabla 11**), con las tipologías 111 (*Ríos de montaña mediterránea silícea*) y 127 (*Ríos de alta montaña*) presentando las temperaturas más frías y los tipos 117 (*Grandes ejes en ambiente mediterráneo*) y 115 (*Ejes mediterráneo-continentales poco mineralizados*), las más cálidas.

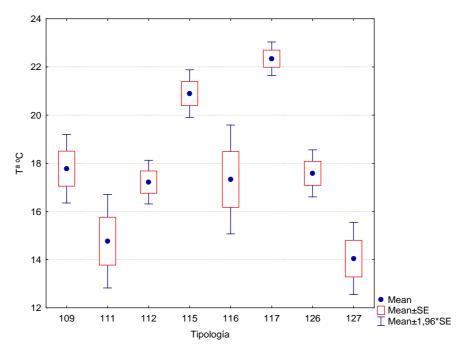


Figura 29. Temperatura del agua (Ta, °C) para las diferentes tipologías de las estaciones durante la campaña de muestreo 2010

TABLA 11
Temperatura media, desviación estándar (SD), valor máximo y mínimo y número de casos (N) para los diferentes tipos de ríos (valores en °C) durante el muestreo de 2010.

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	31	17.78	9.07	24.63	4.05
111	Ríos de montaña mediterránea silícea	6	14.77	12.37	18.35	2.43
112	Ríos de montaña mediterránea calcárea	62	17.22	7.58	23.94	3.63
115	Ejes mediterráneo-continentales poco mineralizados	25	20.89	15.46	24.55	2.52
116	Ejes mediterráneo-continentales mineralizados	3	17.33	15.40	19.39	2.00
117	Grandes ejes en ambiente mediterráneo	9	22.34	21.09	24.53	1.07
126	Ríos de montaña húmeda calcárea	37	17.58	12.85	24.86	3.03
127	Ríos de Alta Montaña	10	14.05	9.75	17.11	2.41

La distribución espacial de las temperaturas observadas se muestra en la **Figura 30**. En ella se observa que las temperaturas más elevadas correspondieron a los tramos medios y bajos del eje principal y de los principales afluentes (tipos 115 y 117), mientras que las más frías correspondieron a las cabeceras montañosas (tipos 111 y 127); se pueden observar algunas excepciones en algunas estaciones de montaña, esto podría ser debido al bajo caudal y a la ausencia de vegetación de ribera.

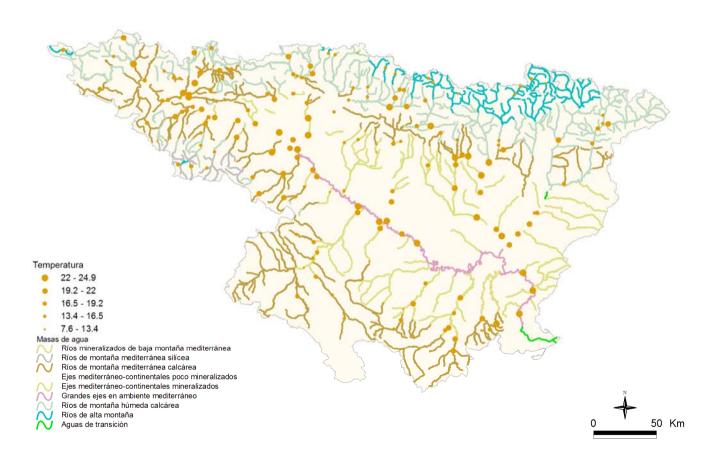


Figura 30. Temperatura (°C) medida en las estaciones de muestreo en 2010

3.3.2 pH

El pH registrado durante los muestreos del año 2010, mostró un rango de variación relativamente amplio, desde los 6,92 medidos en la estación 1387 (Urbión/ Santa Cruz del Valle) hasta los 10,4 alcanzados en la 1351 (Val/Ágreda). La media fue de 8,03.

De todas las masas de agua estudiadas, el 86 % presentaban valores de pH comprendidos entre 7,6 y 8,4. Podemos concluir, por tanto, que las aguas estudiadas son aguas con una cierta basicidad, lo cual es propio de sistemas con predominancia de geologías calizas. En la **Figura 31**, se presenta la distribución de frecuencias de los valores de pH, en ella se observa que un 47 % de las estaciones obtuvieron valores comprendidos entre 8,0 y 8,4.

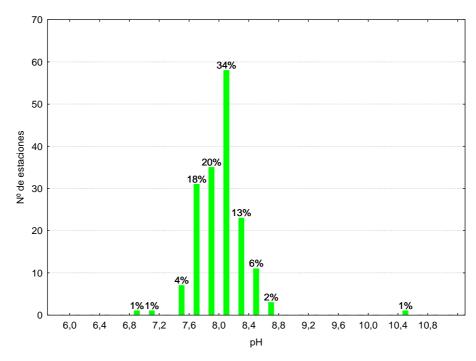
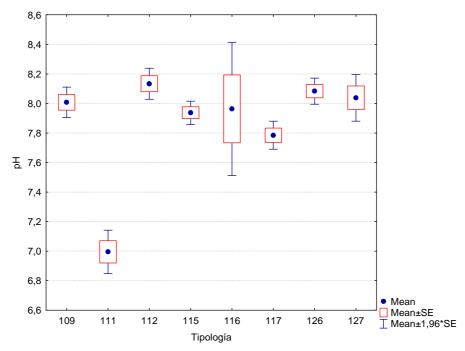



Figura 31. Distribución de frecuencias del pH (unidades de pH)

El pH resultó significativamente diferente entre tipos (**Tabla 10**; **Figura 32**; **Tabla 12**). Los tipos más extremos fueron el tipo 111 (*Ríos de montaña mediterránea silícea*), con una media de 7,00 y el tipo 126 (*Ríos de montaña húmeda calcárea*), con una media de 8,10.

Figura 32. pH (unidades de pH) para las diferentes tipologías de ríos durante la campaña de muestreo de 2010

TABLA 12
pH promedio, desviación estándar (SD), valor máximo y mínimo y número de casos (N) para los diferentes tipos de ríos durante el muestreo de 2010.

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	30	8.0	7.5	8.6	0.3
111	Ríos de montaña mediterránea silícea	2.0	7.0	6.9	7.1	0.1
112	Ríos de montaña mediterránea calcárea	57	8.1	7.4	10.4	0.4
115	Ejes mediterráneo-continentales poco mineralizados	25	7.9	7.5	8.3	0.2
116	Ejes mediterráneo-continentales mineralizados	3	8.0	7.5	8.3	0.4
117	Grandes ejes en ambiente mediterráneo	8	7.8	7.6	8.1	0.1
126	Ríos de montaña húmeda calcárea	36	8.1	7.6	8.8	0.3
127	Ríos de Alta Montaña	10	8.0	7.7	8.5	0.3

La distribución espacial de los valores de pH observados se muestra en la **Figura 33**. Se puede observar que gran parte de los valores más elevados (pH básico) correspondieron a las estaciones de muestreo situadas en zonas de montaña de geología calcárea.

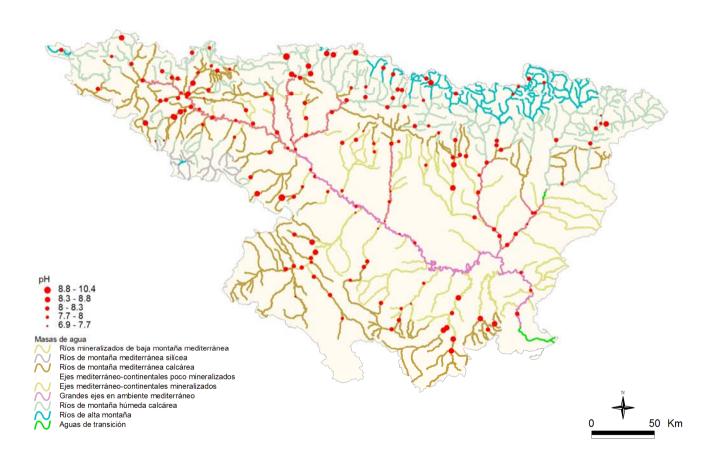


Figura 33. pH medido en las estaciones de muestreo en 2010

3.3.3 Conductividad

Los valores de conductividad oscilaron entre los 40 µS·cm⁻¹ de la localidad silícea 1173 río Tirón aguas arriba de Fresneda de la Sierra, hasta los 38932 µS·cm⁻¹ de la 2238 que corresponde al arroyo Omecillo, de naturaleza salina, que se encuentra en la localidad de Salinas de Añana. La media de las estaciones fue de 990 µS·cm⁻¹.El hecho de que la conductividad eléctrica esté influenciada en gran medida por las características geológicas naturales, además de por la carga de contaminantes, hace de este parámetro un pobre indicador de contaminación a escala de cuenca, donde la variabilidad geológica se podría superponer, en determinados casos, sobre los posibles focos contaminantes difusos o puntuales. La distribución de frecuencias se presenta en la **Figura 34.**

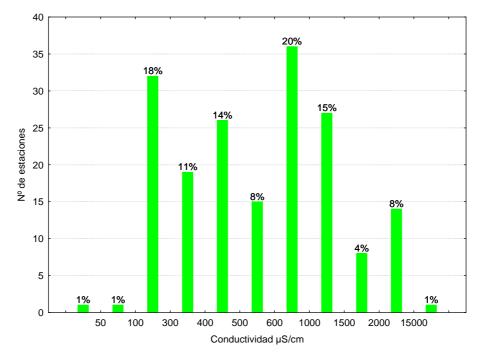
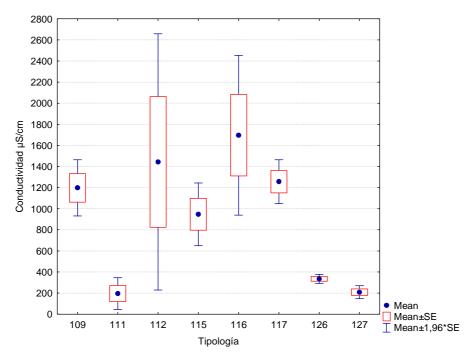



Figura 34. Distribución de frecuencias de la conductividad (μS⋅cm⁻¹)

En la figura superior se observa que el 45 % de las estaciones presentó valores inferiores a 500 μS·cm⁻¹. Sólo un 1 % presentó valores superiores a 15000 μS·cm⁻¹.

Figura 35. Conductividad (μS·cm⁻¹) para las diferentes tipologías de ríos en las estaciones muestreadas durante la campaña de 2010

Se observaron diferencias entre los diferentes tipos de masas fluviales (**Figura 35; Tabla 13**), con los tipos 112 (conductividad media =1444 μS·cm⁻¹) y 111 (196 μS·cm⁻¹) presentando los contrastes más marcados. La variabilidad observada fue muy acentuada en algunos grupos, como el 112 (*Ríos de montaña mediterránea calcárea*) o el 116 (*Ejes mediterráneo-continentales mineralizados*).

TABLA 13

Conductividad media, desviación estándar (SD), valor máximo y mínimo y número de casos (N) para los diferentes tipos de ríos (valores en µS·cm⁻¹)

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	29	1198	397	2851	731
111	Ríos de montaña mediterránea silícea	6	196	40	558	188
112	Ríos de montaña mediterránea calcárea	62	1444	242	38932	4880
115	Ejes mediterráneo-continentales poco mineralizados	25	947	214	3581	758
116	Ejes mediterráneo-continentales mineralizados	2	1697	1310	2083	547
117	Grandes ejes en ambiente mediterráneo	9	1256	970	1766	319
126	Ríos de montaña húmeda calcárea	37	335	101	686	134
127	Ríos de Alta Montaña	10	208	128	472	99

En el mapa de distribución de los valores de conductividad (**Figura 36**) se aprecia claramente como el eje principal del río Ebro, junto con las partes medias y bajas de los principales tributarios, son las zonas que presentaron los valores más elevados de conductividad, esto

pudo ser debido, en algunos casos, a causas naturales de origen geológico, como por ejemplo la predominancia de rocas sedimentarias con elevados contenidos de sales, cloruros, sulfatos, etc. En otros casos los tramos medios y bajos de los ríos presentan una elevada superficie agrícola tanto extensiva como intensiva, así como una elevada carga poblacional e industrial. También se puede dar una combinación de estas causas.

Figura 36. Conductividad (μS·cm⁻¹) medida en las estaciones de muestreo en 2010

3.3.4 Oxígeno disuelto

Los valores de oxígeno disuelto en las estaciones muestreadas oscilaron entre los 3,2 mg/L del río Zadorra en Salvatierra hasta los 13,79 mg/L medidos en la estación 2013 situada en el río Osía en la localidad Jasa. Un 60 % de las estaciones presentó valores comprendidos en el rango 8-10 mg/L, **Figura 37.** La media para las estaciones muestreadas fue de 9,23 mg/L.

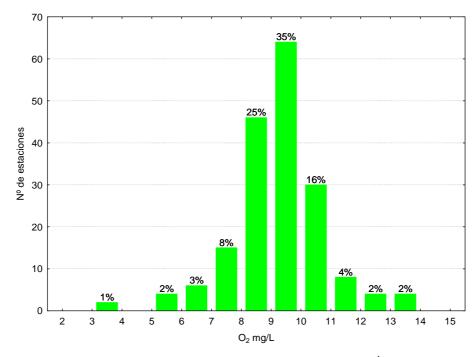
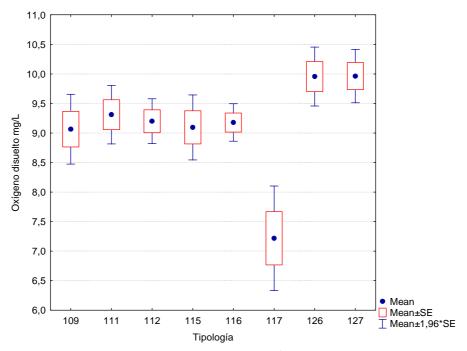



Figura 37. Distribución de frecuencias del oxígeno disuelto (mg·L⁻¹)

Figura 38. Concentraciones de oxígeno (mg·L⁻¹) para las diferentes tipologías de ríos en las estaciones muestreadas durante la campaña de 2010

Se encontraron diferencias entre tipos de ríos (**Tabla 10**). Las diferencias de valores de oxígeno observadas en los diferentes tipos de ríos se muestran en la **Figura 38** y en la **Tabla 14**. Los valores más elevados se midieron en los tipos de montaña 126 y 127 (ríos de montaña húmeda calcárea y ríos de alta montaña).

TABLA 14

Concentración de oxígeno media, desviación estándar (SD), valor máximo y mínimo y número de casos (N) para los diferentes tipos de ríos en 2010 (valores en mg·L⁻¹)

TIDOC	Danaminasián	NI.	Madia	N/1:	Mass	CD
TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	31	9.06	3.30	12.09	1.68
111	Ríos de montaña mediterránea silícea	6	9.31	8.62	10.37	0.62
112	Ríos de montaña mediterránea calcárea	62	9.20	3.22	13.34	1.52
115	Ejes mediterráneo-continentales poco mineralizados	25	9.09	6.33	11.40	1.40
116	Ejes mediterráneo-continentales mineralizados	3	9.18	8.95	9.49	0.28
117	Grandes ejes en ambiente mediterráneo	9	7.22	5.13	9.62	1.36
126	Ríos de montaña húmeda calcárea	37	9.96	7.81	13.79	1.55
127	Ríos de Alta Montaña	10	9.96	8.88	11.27	0.73

En la **Figura 39** se muestran espacialmente los valores de concentración de oxígeno disuelto a lo largo de toda la Cuenca.

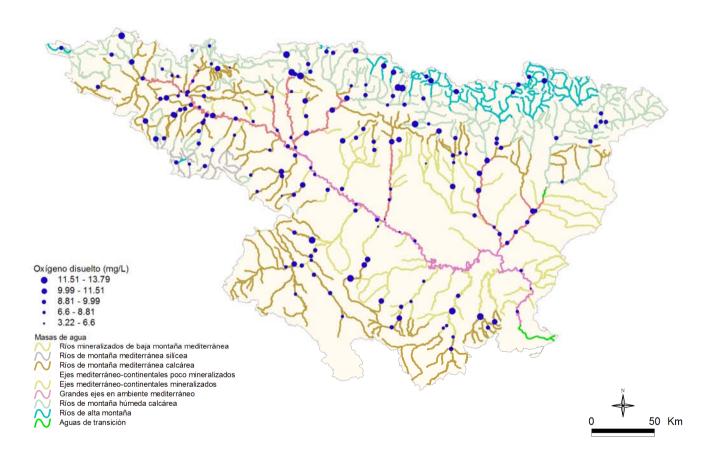


Figura 39. Concentración de oxígeno (mg·L⁻¹) medida en las estaciones de muestreo en 2010

3.4 Resultados hidromorfológicos

La caracterización de la calidad hidromorfológica según la DMA, incluye la evaluación de la estructura física, así como el régimen de caudales asociados a los ecosistemas fluviales. La hidromorfología es la base de cualquier sistema fluvial, ya que es un elemento que estructura las comunidades y procesos biológicos que se dan en el sistema. La DMA incluye, en el anexo V, una lista con los grupos de indicadores de calidad para la clasificación del estado ecológico de las masas de agua superficiales. Estos grupos de indicadores reciben el nombre de elementos de calidad. Para los ríos se proponen tres elementos de calidad hidromorfológica:

• Régimen hidrológico:

Caudales e hidrodinámica del flujo de las aguas Conexión con masas de agua subterránea

Continuidad del río

Condiciones morfológicas

Variación de la profundidad y anchura del río Estructura y sustrato del lecho del río Estructura de la zona ribereña

Para valorar el nivel de calidad de los elementos se utilizan parámetros descriptores de cada uno de ellos, medidos mediante métricas que pueden ser medidas directas, índices o combinaciones de diferentes parámetros.

La DMA exige una valoración genérica de la calidad hidromorfológica de cada masa de agua, lo que obliga a combinar las diferentes métricas evaluadas para dar un nivel de calidad final. Los resultados de la valoración de la calidad hidromorfológica se pueden expresar en los 5 niveles de calidad propuestos por la DMA (*muy bueno, bueno, moderado, deficiente y malo*). Esta clasificación en 5 categorías es útil para priorizar actuaciones y hacer un seguimiento adecuado de los resultados de la aplicación de los planes de medidas. Para determinar el estado ecológico de las masas de agua, en cambio, la guía REFCOND prevé tan solo la utilización de dos niveles de calidad hidromorfológica en función de si los elementos de calidad corresponden o no a condiciones completamente o casi completamente inalteradas.

La mayoría de estos aspectos de la hidromorfología fluvial, junto con otros relativos a la composición y estructura de la ribera o la diversidad de hábitats son evaluados mediante los índices IHF (Índice de Hábitat Fluvial) (Pardo et al. 2004) y QBR (Índice de Calidad del Bosque de Ribera) (Munné et al. 2006), con lo que su utilización se ha considerado adecuada para la estima del estado ecológico de las masas fluviales. Debemos señalar, no obstante, algunas de las limitaciones de estos índices, destacando la variabilidad estacional del IHF, ligada al régimen hidrológico (Pardo et al. 2004) y las restricciones de aplicación del QBR en cuencas de regiones semiáridas y áridas (Suárez et al. 2004), así como en las zonas de alta montaña en las que no existe vegetación arbórea por causas naturales y sólo se encuentran pastizales (Munné et al. 2006).

En el **Anexo 1** se incluyen los índices QBR e IHF obtenidos durante los muestreos realizados en el año 2010.

Se realizaron contrastes no paramétricos de Kruskal-Wallis para testar diferencias entre los distintos tipos de ríos. Los resultados de estos análisis se sintetizan en la **Tabla 20**.

TABLA 15

TESTS DE KRUSKAL-WALLIS H POR TIPOS*

Se incluyen los valores de probabilidad p, en rojo y negrita aquellas diferencias significativas

Variable	Н	N	р
IHF	19,24	180	0,007
QBR	36,61	179	0,000

Los comentarios para estas dos tablas se realizan, para cada parámetro, en los puntos siguientes.

3.4.1 Índice de Hábitat Fluvial (IHF)

La calidad del hábitat fluvial, evaluada mediante el índice IHF, osciló entre los 48 puntos de la estación 2060, que se encuentra en el Bco. de la Violada en Zuera, y los 88 de la estación 1403 del río Aranda en Aranda de Moncayo. El mayor porcentaje de estaciones, con un 32 %, correspondió al rango de puntuación 65-70, **Figura 40**. El valor medio para el conjunto de la estaciones fue de 65 puntos.

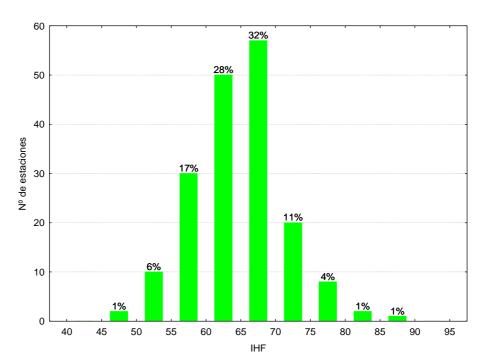


Figura 40. Distribución de frecuencias del índice de calidad del hábitat fluvial (IHF) en 2010

Las diferencias entre tipos de masas de agua fueron significativas (**Tabla 15**), Los valores más elevados del índice correspondieron al tipo 111 (*Ríos de montaña mediterránea silícea*) y los más bajos al tipo 127 (*Ríos de Alta Montaña*), las diferencias entre el resto de las tipologías fueron muy bajas (**Figura 41**; **Tabla 16**). Destaca la elevada variabilidad de los tipos 112 (*Ríos de Montaña Mediterránea Calcárea*), 126 (*Ríos de Montaña Húmeda Calcárea*) y 116 (*Ejes mediterráneo-continentales mineralizados*).

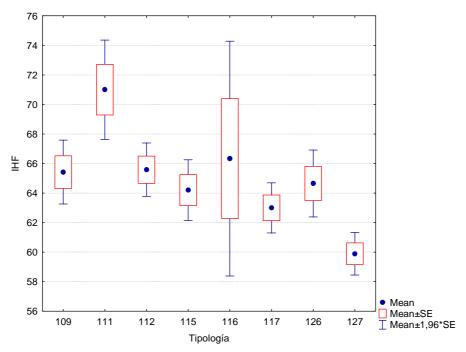


Figura 41. Distribución del índice de calidad del hábitat fluvial (IHF) por tipos de ríos

TABLA 16

Valor medio del índice de calidad del índice de hábitat fluvial (IHF), desviación estándar (SD), valores máximo y mínimo, y número de casos (N) para los diferentes tipos de ríos muestreados en 2010

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	31	65.4	48.0	78.0	6.1
111	Ríos de montaña mediterránea silícea	6	71.0	67.0	78.0	4.2
112	Ríos de montaña mediterránea calcárea	60	65.6	50.0	88.0	7.1
115	Ejes mediterráneo-continentales poco mineralizados	25	64.2	53.0	78.0	5.2
116	Ejes mediterráneo-continentales mineralizados	3	66.3	59.0	73.0	7.0
117	Grandes ejes en ambiente mediterráneo	9	63.0	59.0	66.0	2.6
126	Ríos de montaña húmeda calcárea	37	64.6	51.0	83.0	7.0
127	Ríos de Alta Montaña	9	59.9	56.0	63.0	2.2

En la **Figura 42**, página siguiente, se muestra la distribución de los valores de IHF obtenidos en la diferentes estaciones muestreas, destacan los elevados valores obtenidos en algunas estaciones de la red de Referencia de la Sierra de Guara.

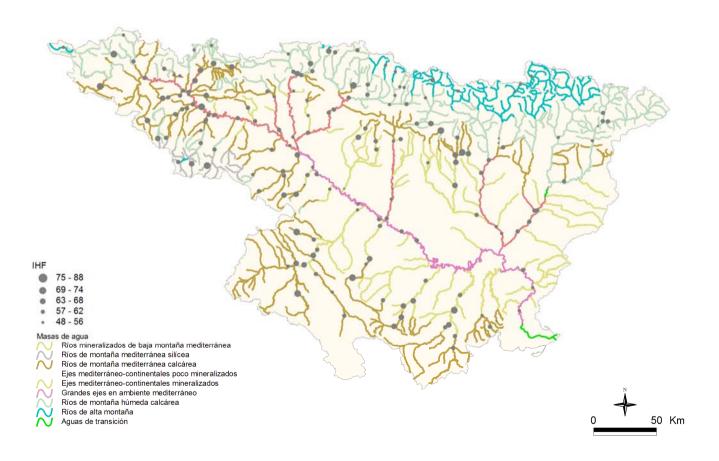


Figura 42. Distribución de los valores de IHF en las estaciones de muestreo de la Cuenca del Ebro en 2010

3.4.2 Índice de Calidad del Bosque de Ribera (QBR)

La calidad de las riberas, evaluada mediante el índice QBR, fue bastante variable (**Figura 43**). Los valores oscilaron entre los 0 puntos obtenidos en la 1038 (río Linares en Mendavía, en la que en 2009 realizaron una limpieza de las riberas), hasta los máximos de 100 obtenidos en numerosas ocasiones, como por ejemplo en la estación 2003 (río Rudrón en Tablada de Rudrón) o en la 2007 (río Alcanadre en Casbas), entre otras. En total un 52% de las estaciones obtuvieron valores elevados que serían indicativos de la buena calidad en la que se encuentra la vegetación de ribera.

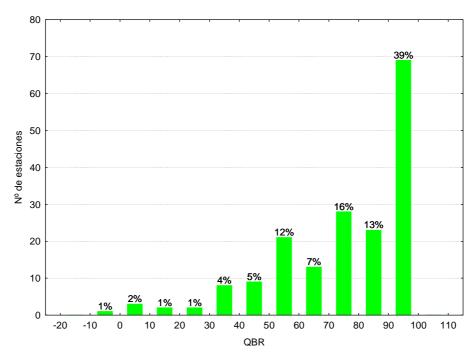


Figura 43. Distribución de frecuencias del índice de calidad del bosque de ribera (QBR) en 2010

La media del QBR para el total de estaciones estudiadas fue de 78 puntos.

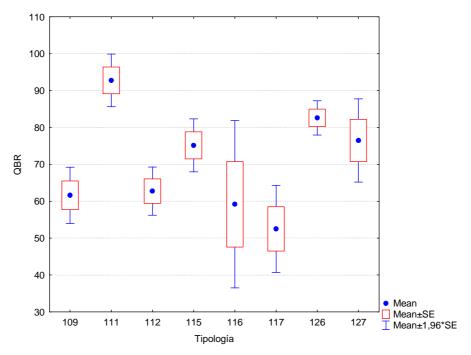


Figura 44. Distribución del índice de calidad del bosque de ribera (QBR) por tipos de ríos

Las diferencias entre tipos de masas de agua fueron significativas en el caso del QBR (**Tabla 15**), con los tipos 111 (*ríos de montaña mediterránea silícea*), 126 (*ríos de montaña húmeda calcárea*) y 127 (*ríos de alta montaña*) presentando riberas de mayor calidad y el tipo 117 (*grandes ejes en ambiente mediterráneo*) las de peor calidad (**Figuras 44; Tabla 17**).

TABLA 17

Valor medio del índice de calidad del bosque de ribera (QBR), desviación estándar (SD), valores máximo y mínimo y número de casos (N) para los diferentes tipos de ríos muestreados en 2010

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	30	74	0	100	29
111	Ríos de montaña mediterránea silícea	6	97	80	100	8
112	Ríos de montaña mediterránea calcárea	62	76	5	100	26
115	Ejes mediterráneo-continentales poco mineralizados	25	73	40	100	17
116	Ejes mediterráneo-continentales mineralizados	3	72	65	80	8
117	Grandes ejes en ambiente mediterráneo	9	55	35	75	11
126	Ríos de montaña húmeda calcárea	37	91	50	100	14
127	Ríos de Alta Montaña	7	84	65	100	15

Las estaciones que presentaron una mayor variabilidad entre ellas fueron las correspondientes a los tipos 109, 112 y 115.

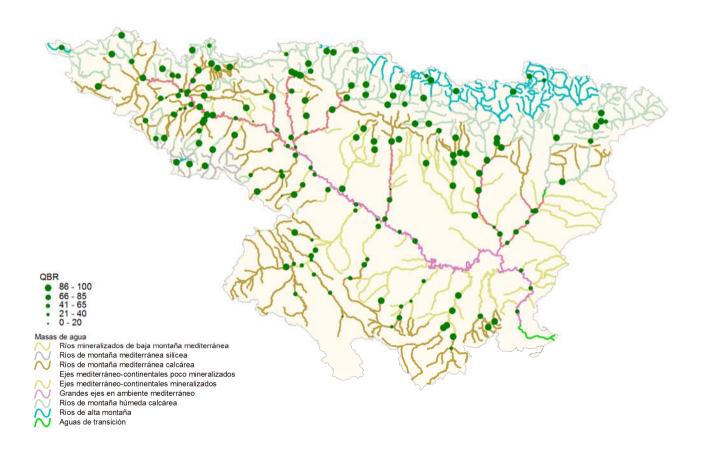


Figura 45. Distribución espacial de los valores de QBR de las estaciones muestreadas en 2010

Si se analiza el mapa con la distribución espacial de las clases de calidad del QBR que se obtuvieron (**Figura 45**), se puede observar que los valores más elevados del QBR se corresponden con las estaciones de referencia presentes en zonas de cabecera y tramos de río con baja presión agrícola, o que se hallan encajados en el terreno y presentan unas riberas inaccesibles. Existe alguna excepción aislada que se correspondería con masas de agua que discurren por fondos de valle y zonas cercanas a poblaciones. En cambio, los valores más bajos se hallaron en tramos urbanos y en aquellas cuencas en las que la pendiente del terreno es baja y permite el cultivo cerca del cauce.

4. Red de Control Operativo

4.1 Introducción

En este apartado se incluye los resultados de las estaciones incluidas en la red de Control Operativo. En total se estudiaron 190 estaciones pertenecientes a 184 masas de agua diferentes. A continuación se explica brevemente el por qué de su estudio.

TABLA 18

Nº de estaciones de la red de control operativo
para cada una de las tipologías de ríos presentes en la Cuenca

TIPOS	Denominación	N
109	Ríos mineralizados de baja montaña mediterránea	47
111	Ríos de montaña mediterránea silícea	6
112	Ríos de montaña mediterránea calcárea	69
115	Ejes mediterráneo-continentales poco mineralizados	34
116	Ejes mediterráneo-continentales mineralizados	5
117	Grandes ejes en ambiente mediterráneo	15
126	Ríos de montaña húmeda calcárea	44
127	Ríos de alta montaña	12

El anexo V de la DMA establece que se deberá llevar a cabo un control operativo encaminado a:

- determinar el estado de las masas que se considere que pueden no cumplir sus objetivos medioambientales (OMA); y
- evaluar los cambios que se produzcan en el estado de dichas masas como resultado de los programas de medidas.

En cuanto a la selección de los puntos de control establece que:

- el control operativo se efectuará sobre todas las masas de agua que se considere que pueden no cumplir sus objetivos medioambientales con arreglo al artículo 4, bien basándose en la evaluación del impacto llevada a cabo según lo dispuesto en el anexo II o bien basándose en el control de vigilancia.
- sobre las masas de agua en las que se viertan sustancias incluidas en la lista de sustancias prioritarias.

4.2 Metodología

La metodología utilizada se explica detalladamente en el apartado 2 (Metodología).

4.3 Resultados biológicos. Macroinvertebrados, macrófitos y diatomeas

En este apartado se incluyen los resultados obtenidos en el análisis de las muestras de macroinvertebrados, vegetación macrofítica acuática y fitobentos (diatomeas) y la aplicación de los índices bióticos (IBMWP, IASPT, IVAM e IPS).

Los datos de los indicadores biológicos se incluyen en el **Anexo 1** junto con los datos físicoquímicos e hidromorfológicos

A partir de estos datos, en los siguientes apartados se resumen y sintetizan los resultados obtenidos para los indicadores y métricas de macroinvertebrados, macrófitos y diatomeas.

Asimismo, se realizaron contrastes no paramétricos de Kruskal-Wallis para testar diferencias biológicas entre los distintos tipos de ríos. Los resultados de estos análisis se sintetizan en la **Tabla 19**.

TABLA 19
TESTS DE KRUSKAL-WALLIS H POR TIPOS DE RÍOS
PARA LOS INDICADORES BIOLÓGICOS.

Se incluyen los valores de probabilidad \emph{p} , en rojo y negrita aquellas diferencias significativas

Variable	Н	N	р
IBMWP	29,28	140	0,000
NTAX IBMWP	14,50	140	0,04
NTAX MAI	10,69	140	0,15
IASPT	47,41	140	0,000
IVAM	36,80	113	0,000
IPS	18,53	103	0,009

4.3.1 Macroinvertebrados bentónicos

A) IBMWP (Iberian Biological Monitoring Working Party)

Se estudiaron un total de 140 estaciones. Los valores hallados para el índice IBMWP oscilaron entre el valor 33 hallado en la estación CEMAS 1203 (Río Jiloca en Morata de Jiloca) y el valor 234 hallado en la CEMAS 1251 (Río Queiles en los Fayos), con un valor medio de 123. El 73 % de los puntos analizados en la campaña del año 2010 tuvieron valores del IBMWP dentro del rango comprendido entre 80 y 180. En la **Figura 46**, se presenta la distribución de frecuencias de los datos obtenidos.

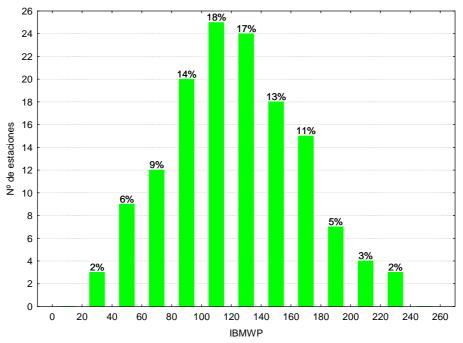


Figura 46. Distribución de frecuencias de los valores del IBMWP

Las diferencias entre tipos de ríos fueron significativas (**Tabla 19**), con los tipos de ríos de montaña, 111,112, 126 y 127, destacando por encima de los demás tipos (**Tabla 20**; **Figura 47**). El tipo 116 (*Ejes mediterráneo-continentales mineralizados*) presentó los valores más bajos. La mayor variabilidad se obtuvo en el tipo 109.

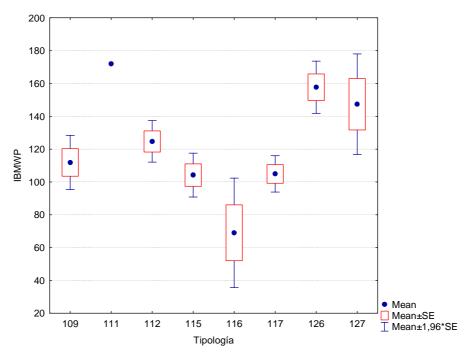


Figura 47. Valores medios del índice IBMWP por tipos de ríos

TABLA 20

Valor medio del IBMWP, desviación estándar (SD), valores máximo y mínimo, y número de casos (N) para los diferentes tipos de ríos muestreados en 2010

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	29	111.86	38	197	45.20
111	Ríos de montaña mediterránea silícea	1	172.00	172	172	
112	Ríos de montaña mediterránea calcárea	48	124.69	33	234	44.62
115	Ejes mediterráneo-continentales poco mineralizados	23	104.17	56	172	32.77
116	Ejes mediterráneo-continentales mineralizados	2	69.00	52	86	24.04
117	Grandes ejes en ambiente mediterráneo	8	104.88	73	119	16.02
126	Ríos de montaña húmeda calcárea	23	157.74	80	229	38.85
127	Ríos de Alta Montaña	6	147.33	103	200	38.36

En la **Figura 48** se observa que los valores de IBMWP más altos correspondieron con los tramos de piedemonte, que presentan menos impactos que los tramos medios y bajos que sufren mayores presiones, de tipo agrícola, urbano o industrial.

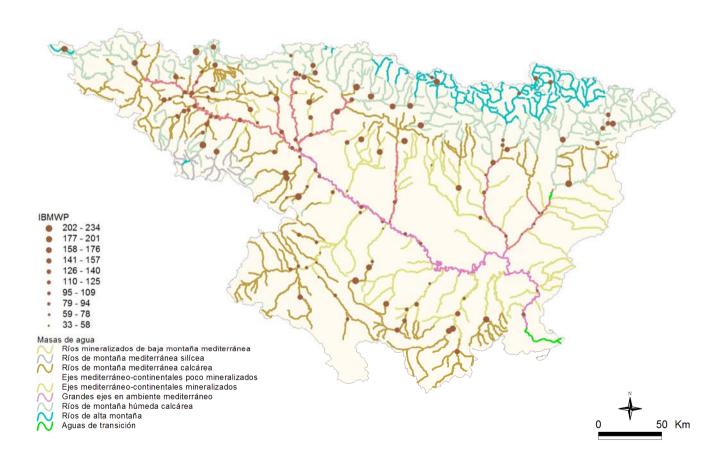


Figura 48. Distribución espacial de los valores de IBMWP en la Cuenca del Ebro 2010

B) IASPT (Iberian Average Score per Taxon)

Los valores del índice IASPT oscilaron entre los 3,45 puntos obtenidos en la localidad 0218 en el río Isuela en Pompenillo, hasta los 6,50 de la estación 0013 que se encuentra en el río Ésera aguas arriba de Graus. Un 34 % de las muestras presentaron valores por superiores a 5 (**Figura 49**). La media fue de 4,67 puntos.

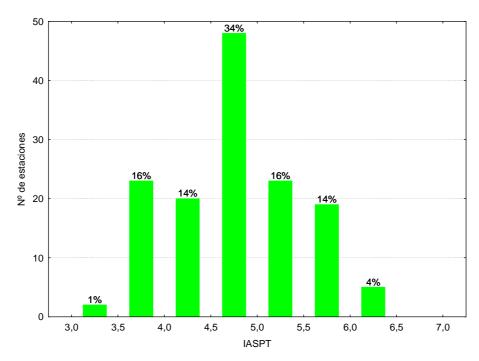


Figura 49. Distribución de frecuencias del índice IASPT durante la campaña de muestreo de 2010

Las diferencias entre tipos de ríos fueron significativas (**Tabla 19**). Los tipos que corresponden a zonas montañosas, 111, 126 y 127, obtuvieron los valores más elevados (**Tabla 21**; **Figura 50**), mientras que los tipos 109 (*Ríos mineralizados de baja montaña mediterránea*) y 116 (*Ejes mediterráneo-continentales mineralizados*) presentaron los valores más bajos.

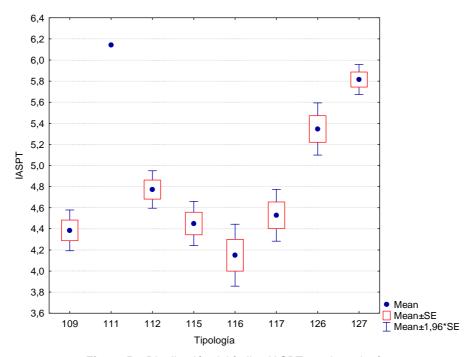


Figura 50. Distribución del índice IASPT por tipos de ríos

La mayor variabilidad de los datos, **Tabla 21**, se observó en el tipo 112 (*Ríos de montaña mediterránea calcárea*).

TABLA 21

Valor medio del IASPT, desviación estándar (SD), valores máximo y mínimo, y número de casos (N) para los diferentes tipos de ríos muestreados en 2010

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	29	4.39	3.45	5.29	0.53
111	Ríos de montaña mediterránea silícea	1	6.14	6.14	6.14	
112	Ríos de montaña mediterránea calcárea	48	4.77	3.54	6.50	0.63
115	Ejes mediterráneo-continentales poco mineralizados	23	4.45	3.50	5.41	0.51
116	Ejes mediterráneo-continentales mineralizados	2	4.15	4.00	4.30	0.21
117	Grandes ejes en ambiente mediterráneo	8	4.53	3.91	4.92	0.35
126	Ríos de montaña húmeda calcárea	23	5.35	3.81	6.30	0.61
127	Ríos de Alta Montaña	6	5.82	5.56	6.06	0.18

Los valores valores más elevados correspondieron a tramos de piedemonte, Figura 51.

Figura 51. Distribución espacial de los valores de IASPT en la Cuenca del Ebro 2010

C) NTAX IBMWP (nº de Taxones IBMWP)

Los valores del número de taxones que se tuvieron en cuenta para calcular el índice IBMWP, oscilaron entre las 8 familias recogidas en la estación 1203 que se encuentra en el río Jiloca en Morata de Jiloca, hasta las 42 de la estación 1251 en el río Queiles en Los Fayos. Un 74 % de las muestras presentaron valores por encima de 20 familias (**Figura 52**), la media de todas las muestras fue de 25 familias.

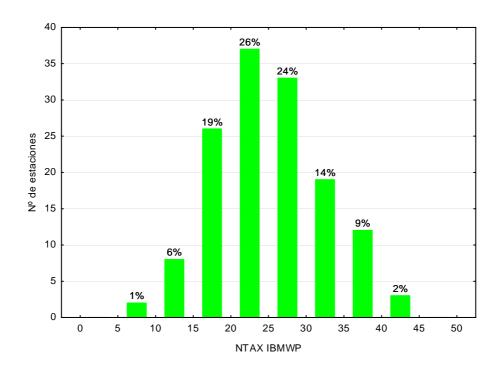


Figura 52. Distribución del Nº de Taxones (NTAX IBMWP) durante la campaña de muestreo de 2010

Las diferencias entre tipos de ríos resultaron significativas (**Tabla 19**). El tipo en el que se encontraron mayor número de taxones fue el 126 (*Ríos de montaña húmeda calcárea*), destacando por encima de los demás tipos (**Tabla 22**; **Figura 53**).

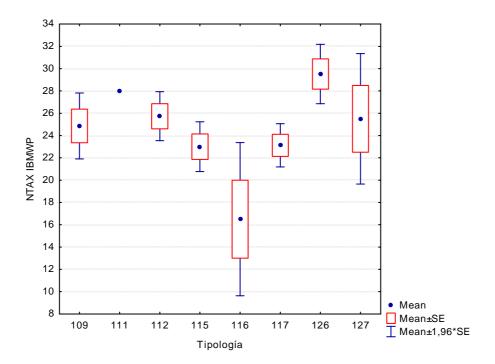


Figura 53. Distribución del número de Taxones (NTAX IBMWP) por tipos de ríos

El tipo 116 (Ejes mediterráneo-continentales mineralizados) presentó los valores más bajos.

TABLA 22

Valor medio del número de Taxones (NTAX IBMWP), desviación estándar (SD), valores máximo y mínimo, y número de casos (N) para los diferentes tipos de ríos muestreados en 2010

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	29	24.86	10	40	8.13
111	Ríos de montaña mediterránea silícea	1	28.00	28	28	
112	Ríos de montaña mediterránea calcárea	48	25.73	8	42	7.76
115	Ejes mediterráneo-continentales poco mineralizados	23	23.00	15	35	5.46
116	Ejes mediterráneo-continentales mineralizados	2	16.50	13	20	4.95
117	Grandes ejes en ambiente mediterráneo	8	23.13	17	26	2.80
126	Ríos de montaña húmeda calcárea	23	29.52	17	39	6.51
127	Ríos de Alta Montaña	6	25.50	17	35	7.31

En la **Figura 54**, se representa espacialmente la distribución del número de taxones IBMWP en la Cuenca del Ebro, como ya se ha comentado con anterioridad, los valores más elevados correspondieron a las estaciones situadas en tramos de piedemonte.

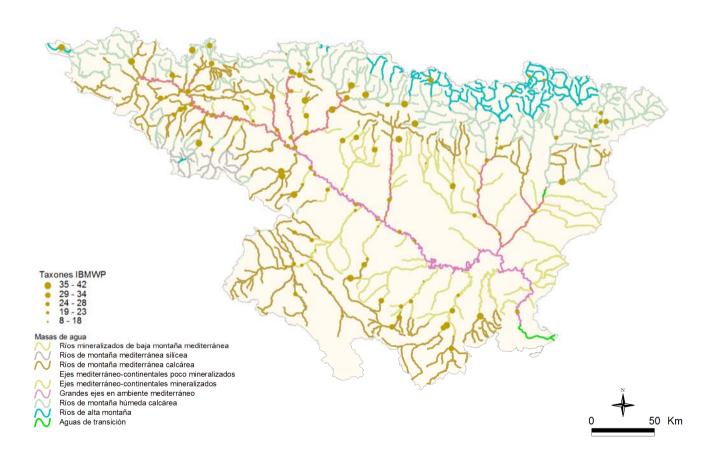


Figura 54. Distribución espacial del nº de familias del IBMWP en la Cuenca del Ebro 2010

D) NTAX MAI (Nº de Taxones Totales de Macroinvertebrados)

Los valores oscilaron entre las 8 familias recogidas en la localidad 0218 (río Isuela en Pompenillo) hasta las 45 de la estación 0243 río Alhama en Venta de Baños de Fitero. Un 79 % de las muestras presentaron valores por encima de 20 familias. (**Figura 55**), la media de todas las muestras fue de 27 familias.

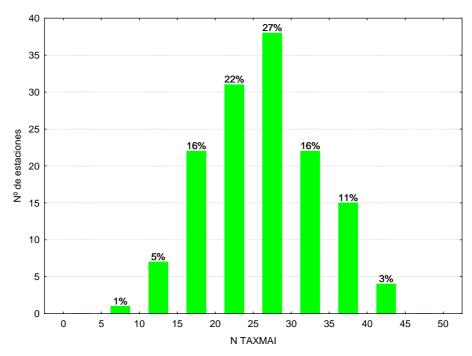


Figura 55. Distribución del Nº de Taxones Totales (NTAX MAI) durante la campaña de muestreo de 2010

Las diferencias entre tipos de ríos resultaron significativas (**Tabla 19**), con los tipos 111, 126 y 127 destacando por encima de los demás tipos (**Tabla 23**; **Figura 56**).

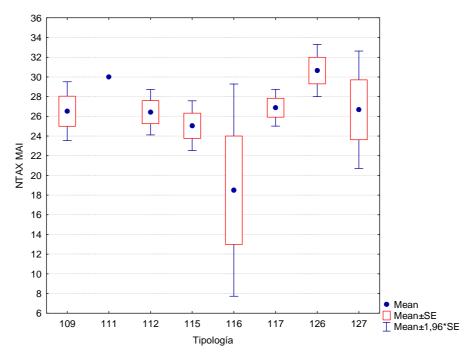


Figura 56. Distribución del número de Taxones totales (NTAX MAI) por tipos de ríos

El tipo 116 (Ejes mediterráneo-continentales mineralizados) presentó los valores más bajos.

TABLA 23

Valor medio del número de Taxones totales (NTAX MAI), desviación estándar (SD), valores máximo y mínimo, y número de casos (N) para los diferentes tipos de ríos muestreados en 2010

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	29	26.52	11	43	8.23
111	Ríos de montaña mediterránea silícea	1	30.00	30	30	
112	Ríos de montaña mediterránea calcárea	48	26.42	8	45	8.14
115	Ejes mediterráneo-continentales poco mineralizados	23	25.04	16	39	6.17
116	Ejes mediterráneo-continentales mineralizados	2	18.50	13	24	7.78
117	Grandes ejes en ambiente mediterráneo	8	26.88	21	30	2.70
126	Ríos de montaña húmeda calcárea	23	30.65	19	40	6.48
127	Ríos de Alta Montaña	6	26.67	17	37	7.45

Los valores más elevados, al igual que en los apartados anteriores, se observaron en las estaciones situadas en las sierras exteriores, **Figura 57**.

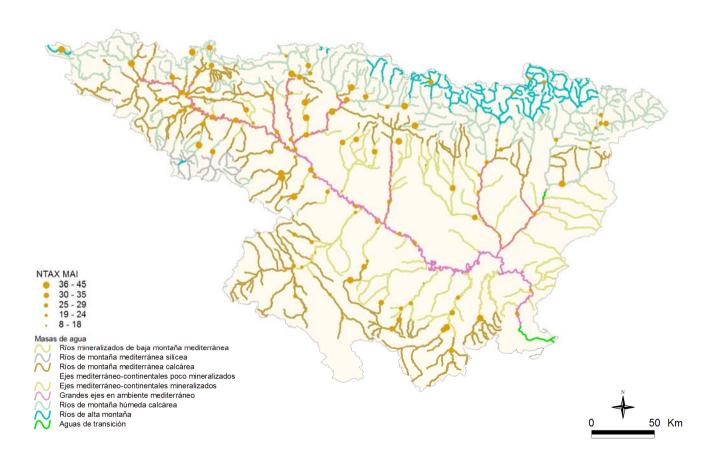


Figura 57. Distribución espacial del nº de taxones totales en la Cuenca del Ebro 2010

4.3.2 Macrófitos: IVAM (Índice de Vegetación Acuática Macroscópica)

A.) Nº de géneros de macrófitos

Del total de estaciones en las que estaba planificado aplicar el IVAM, sólo se pudo aplicar en 113 estaciones, las causas fueron diversas, aunque la principal fue la turbidez del agua que impedía su observación. El número de géneros encontrados en las diferentes estaciones de muestreó osciló desde los 2 géneros hallados en la estación 0574 en el río Najerilla aguas debajo de Nájera, hasta los 22 de la estación de referencia 1471 río Matarraña aguas arriba de la desembocadura del Tastavins. La distribución de frecuencias de los géneros hallados en los diferentes ríos muestreados se presenta en la **Figura 58**, en ella cabe destacar que un 37 % de las estaciones tuvieron entre entre 8 y 12 géneros. La media de géneros para el total de las estaciones fue 11.

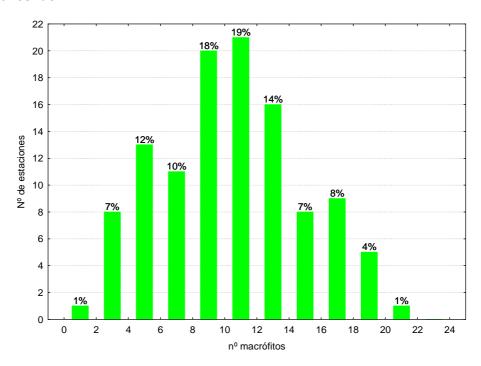


Figura 58. Distribución del Nº de géneros de macrófitos durante la campaña de muestreo de 2010

Al analizar los datos por las diferentes tipologías presentes en la cuenca, **Figura 59, Tabla 24**, se observó que el mayor número de géneros se obtuvo en los *ríos de montaña húmeda calcárea*, 126, seguido por los *grandes ejes en ambiente mediterráneo*, 117. La mayor variabilidad se observó en los *ríos de montaña mediterránea calcárea*, 112.

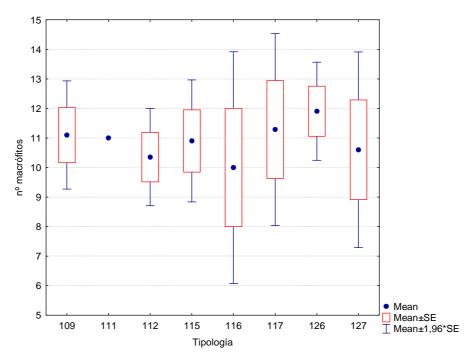


Figura 59. Distribución del número de géneros de macrófitos por tipos de ríos

TABLA 24

Valor medio del número de géneros totales, desviación estándar (SD), valores máximo y mínimo, y número de casos (N) para los diferentes tipos de ríos muestreados en 2010

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	20	11.10	4	18	4.18
111	Ríos de montaña mediterránea silícea	1	11.00	11	11	
112	Ríos de montaña mediterránea calcárea	37	10.35	2	22	5.10
115	Ejes mediterráneo-continentales poco mineralizados	20	10.90	4	20	4.71
116	Ejes mediterráneo-continentales mineralizados	2	10.00	8	12	2.83
117	Grandes ejes en ambiente mediterráneo	7	11.29	5	17	4.39
126	Ríos de montaña húmeda calcárea	21	11.90	5	19	3.88
127	Ríos de Alta Montaña	5	10.60	4	13	3.78

Al representar cartográficamente los datos obtenidos, **Figura 60**, de la página siguiente, destacan algunos puntos del tramo bajo del Segre.

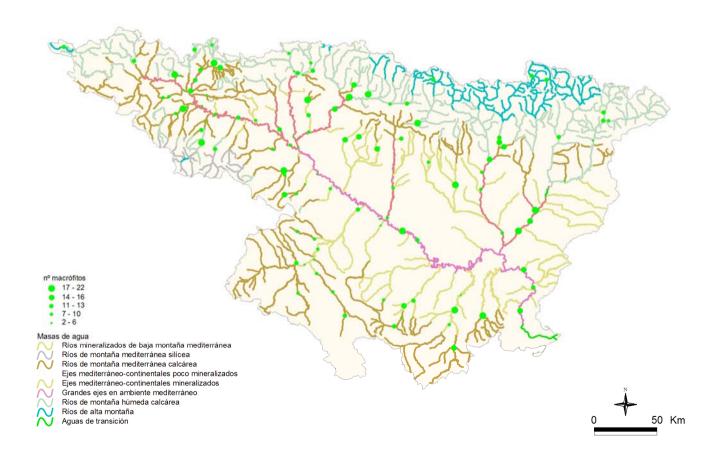


Figura 60. Distribución espacial del nº géneros de macrófitos en la Cuenca del Ebro 2010

B.) IVAM (Índice de Vegetación Acuática Macroscópica)

El índice IVAM, se aplicó en un total de 113 estaciones de las 150 estaciones en las que estaba planificado el muestreo. Las principales causas que impidieron el muestreo de los macrófitos fueron la turbidez y la profundidad. En la **Figura 61** se puede observar la distribución de frecuencias de los valores índice IVAM, el 41 % de las estaciones obtuvo valores superiores a 5. Los valores oscilaron entre los 2 puntos, obtenidos en la estación 0593, situada en el río Jalón a su paso por Terrer, hasta los 7,00 de la estación 0618 del río Gállego en el embalse del Gállego. La media de los datos fue de 4,7 puntos.

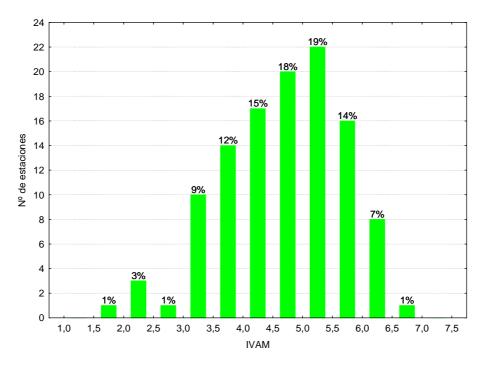


Figura 61. Distribución de frecuencias del índice IVAM durante la campaña de muestreo de 2010

Las diferencias entre tipos de ríos también fueron significativas (**Tabla 19**), con los tipos 111 (*Ríos de montaña mediterránea silícea*) y 127 (*Ríos de alta montaña*) destacando por encima de los demás tipos (**Tabla 25**; **Figura 62**). Las estaciones de los tipos 117 (*Grandes ejes en ambiente mediterráneo*) y 115 (*Ejes mediterráneo-continentales poco mineralizados*) presentaron los valores más bajos del índice.

TABLA 25

Valor medio del índice IVAM, desviación estándar (SD), valores máximo y mínimo, y número de casos (N) para los diferentes tipos de ríos muestreados en 2010

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	20	4.54	2.00	6.39	1.15
111	Ríos de montaña mediterránea silícea	1	5.79	5.79	5.79	
112	Ríos de montaña mediterránea calcárea	37	4.66	2.40	5.90	0.80
115	Ejes mediterráneo-continentales poco mineralizados	20	4.32	2.40	6.03	0.86
116	Ejes mediterráneo-continentales mineralizados	2	4.49	4.24	4.74	0.36
117	Grandes ejes en ambiente mediterráneo	7	3.50	3.08	4.08	0.39
126	Ríos de montaña húmeda calcárea	21	5.33	2.35	6.42	0.85
127	Ríos de Alta Montaña	5	6.08	5.26	7.00	0.77

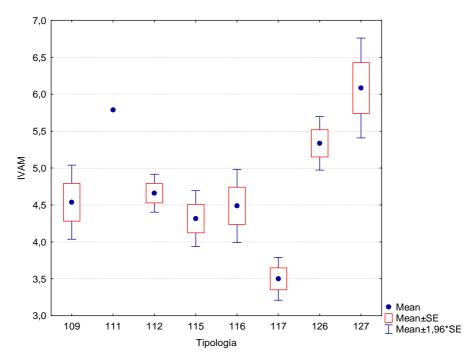


Figura 62. Distribución del Índice de Vegetación Acuática Macrofítica (IVAM) por tipos de ríos

En la siguiente página, **Figura 63**, se representan cartográficamente los resultados del índice IVAM obtenidos durante los muestreos del verano de 2010. Destacan las estaciones de las Cuencas del Arba de Luesia y del Cinca.

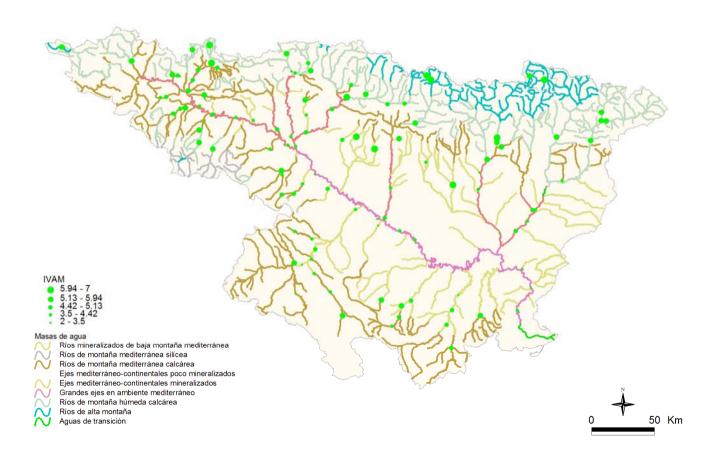


Figura 63. Distribución espacial del IVAM en la Cuenca del Ebro 2010

4.3.3 Fitobentos (diatomeas): IPS (Índice de Poluosensibilidad Específica)

El índice seleccionado para la evaluación del estado ecológico utilizando las diatomeas ha sido el IPS (Índice de Poluosensibilidad Específica) (Cemagref, 1982), que es considerado como el que mejor responde a las poblaciones de diatomeas en la Cuenca del Ebro y el que se indica como oficial en la Instrucción de Planificación Hidrológica, IPH.

El índice IPS, se aplicó en un total de 103 estaciones de las 190 en las que se tenía previsto muestrear. En el resto no se pudo tomar muestra de diatomeas, bien por una elevada turbidez del agua o a la ausencia de un sustrato adecuado libre de sedimentos y algas filamentosas, esto ocurrió principalmente en los tramos medios y bajos de los ríos.

El índice IPS osciló entre los 4,7 puntos, obtenidos en la estación 2140 que se encuentra en el río Gas en Jaca, hasta el máximo de 19,9 puntos que se obtuvo en la estación 0574 del río Najerilla aguas debajo de Nájera. En la **Figura 64**, se presenta gráficamente la distribución de frecuencias de los datos del índice IPS obtenidos, destaca que casi un tercio de las estaciones obtuvieron valores superiores a 18 puntos.

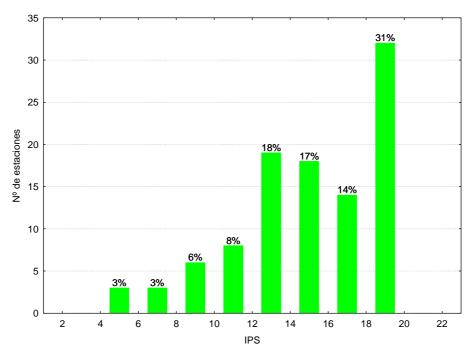


Figura 64. Distribución de frecuencias del índice IPS durante la campaña de muestreo de 2010

TABLA 26

Valor medio del índice IPS, desviación estándar (SD), valores máximo y mínimo, y número de casos (N) para los diferentes tipos de ríos muestreados en 2010

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	20	14.50	5.80	19.70	4.39
111	Ríos de montaña mediterránea silícea	1	19.60	19.60	19.60	
112	Ríos de montaña mediterránea calcárea	37	14.65	5.90	19.90	3.67
115	Ejes mediterráneo-continentales poco mineralizados	16	13.20	8.40	19.70	3.05
116	Ejes mediterráneo-continentales mineralizados	1	13.10	13.10	13.10	
117	Grandes ejes en ambiente mediterráneo	1	14.10	14.10	14.10	
126	Ríos de montaña húmeda calcárea	21	16.37	4.70	19.70	3.80
127	Ríos de Alta Montaña	6	18.58	16.50	19.80	1.26

Las diferencias entre tipos de ríos fueron significativas (**Tabla 19**), con los tipos 111, 126 y 127 (ríos de montaña) destacando por encima de los demás tipos (**Tabla 26**; **Figura 65**). Las estaciones de los tipos 116 y 115 presentaron los valores más bajos.

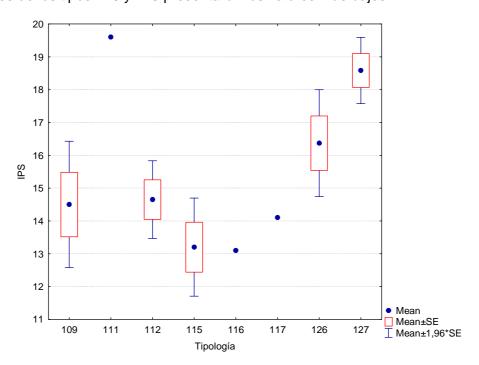


Figura 65. Valores medios del índice IPS por tipos de ríos

Al representar los valores del índice IPS en el mapa de la Cuenca del Ebro, **Figura 66**, se observa la presencia de valores elevados del índice dispersos por la Cuenca.

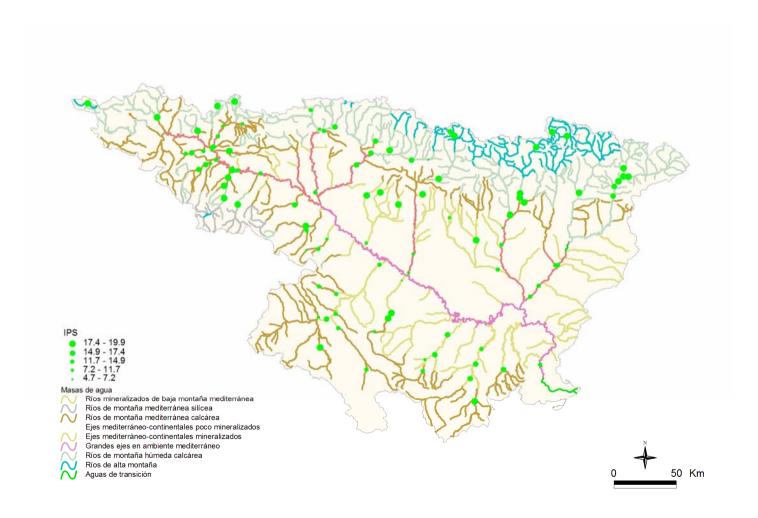


Figura 66. Distribución espacial del IPS en la Cuenca del Ebro 2010

4.4 Resultados físico-químicos

En el **Anexo 1** se incluyen los resultados obtenidos para los parámetros físico-químicos e hidromorfológicos tomados *in situ*, obtenidos durante los muestreos de 2010.

En los siguientes apartados se sintetizan los resultados obtenidos y se realizan comentarios sobre cada uno de los parámetros físico-químicos analizados. Asimismo, se realizaron contrastes no paramétricos de Kruskal-Wallis para testar diferencias entre distintos tipos de ríos. Los resultados de estos análisis se sintetizan en la **Tabla 27**.

TABLA 27

Tests de Kruskal-Wallis H por TIPOS

En rojo y negrita aquellas diferencias significativas (p < 0.05)

Variable	Н	N	р
Ta (°C)	91,07	143	0,000
рН	13,22	134	0,039
Conductividad (µS/cm)	62,36	141	0,000
O ₂ disuelto (mg/l)	17,58	143	0,014

Los comentarios relativos a la **Tabla 27** se realizan, para cada parámetro, en los apartados siguientes. Los diagramas de cajas muestran el comportamiento de las diferentes variables en las diferentes tipologías de ríos. Estos resultados se acompañan de tablas resumen de los principales estadísticos observados (número de casos o N, media, desviación estándar, máximo –Max- y mínimo –Min-) para cada variable. Asimismo, las variables han sido cartografiadas para interpretar su dimensión espacial en la Cuenca del Ebro durante la presente campaña de muestreo.

4.4.1 Temperatura

Las temperaturas oscilaron entre los 7,58 °C medidos el día 4 de mayo en la estación 1219, que se encuentra en el río Huerva en la localidad de Cerveruela, hasta los 24,86 °C registrados el 18 de agosto en la localidad 1047 (Aragón/Puente la Reina de Jaca). La temperatura media, para el conjunto de estaciones, fue de 18,1 ° C.

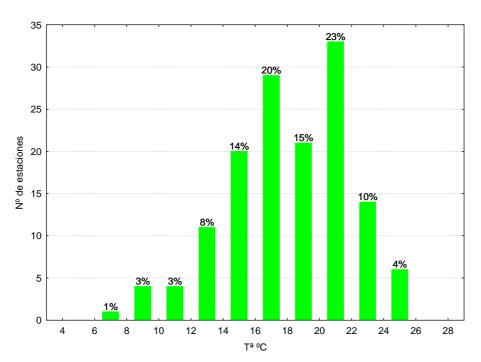
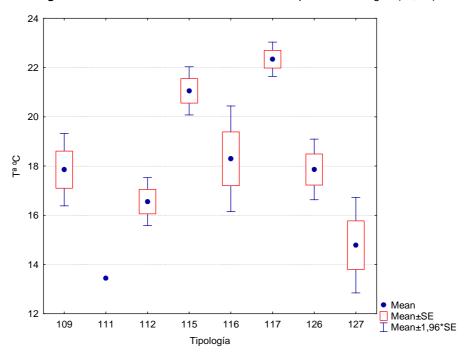



Figura 67. Distribución de frecuencias de la temperatura del agua (Ta, oC)

Figura 68. Temperatura del agua (Ta, °C) para las diferentes tipologías de las estaciones durante la campaña de muestreo 2010

Las temperaturas fueron significativamente diferentes entre tipos de ríos (**Tabla 27**; **Figura 68**; **Tabla 28**), con las tipologías 111 (*Ríos de montaña mediterránea silícea*) y 127 (*Ríos de alta montaña*) presentando las temperaturas más frías y los tipos 117 (*Grandes ejes en*

ambiente mediterráneo) y 115 (Ejes mediterráneo-continentales poco mineralizados), las más cálidas.

TABLA 28
Temperatura media, desviación estándar (SD), valor máximo y mínimo y número de casos (N) para los diferentes tipos de ríos (valores en °C) durante el muestreo de 2010.

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	29	17.85	9.07	24.63	4.04
111	Ríos de montaña mediterránea silícea	1	13.44	13.44	13.44	
112	Ríos de montaña mediterránea calcárea	49	16.56	7.58	23.22	3.47
115	Ejes mediterráneo-continentales poco mineralizados	24	21.05	15.46	24.55	2.44
116	Ejes mediterráneo-continentales mineralizados	2	18.30	17.20	19.39	1.55
117	Grandes ejes en ambiente mediterráneo	9	22.34	21.09	24.53	1.07
126	Ríos de montaña húmeda calcárea	23	17.86	12.85	24.86	3.02
127	Ríos de Alta Montaña	6	14.79	10.58	17.11	2.43

La distribución espacial de las temperaturas observadas se muestra en la **Figura 69**. En ella se observa que las temperaturas más elevadas correspondieron a los tramos medios y bajos del eje principal y de los principales afluentes (tipos 109, 115, 116 y 117), mientras que las más frías correspondieron a las cabeceras montañosas (tipos 111, 112, 126 y 127).

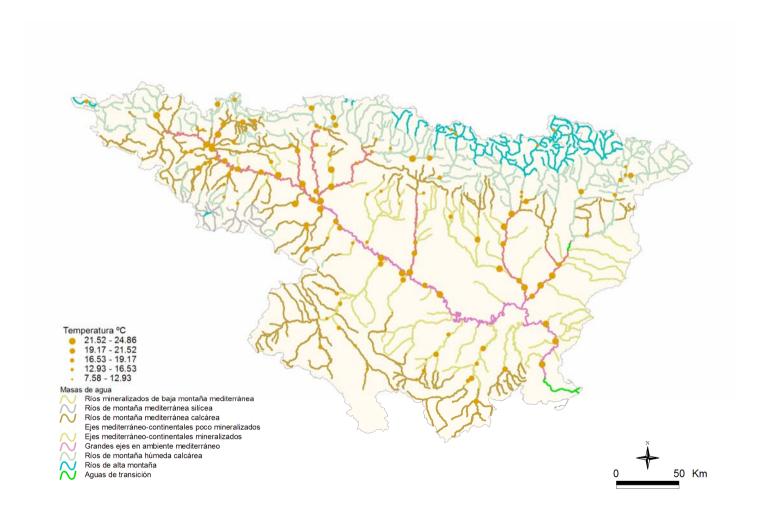


Figura 69. Temperatura (°C) medida en las estaciones de muestreo en 2010

4.4.2 pH

El pH registrado en las estaciones de la red de control operativo durante los muestreos del año 2010, mostró un rango de variación relativamente amplio, desde los 7,42 medidos en la estación 1034 en el río Inglares en Peñacerrada hasta los 10,41 alcanzados en la 1351 del río Val en Ágreda.

De todas las masas de agua estudiadas, el 54 % presentaban valores de pH superiores a 8, con un valor medio de 8,02. Podemos concluir, por tanto, que las aguas estudiadas son aguas con una cierta basicidad, lo cual es propio de sistemas con predominancia de geologías calizas. En la **Figura 70**, se observar la distribución de frecuencias de los valores de pH, se puede observar que un 49,2 % de las estaciones obtuvieron valores comprendidos entre 8,0 y 8,4.

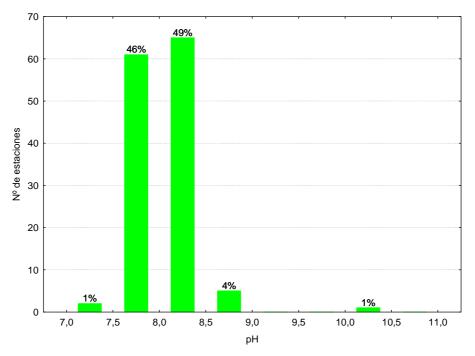
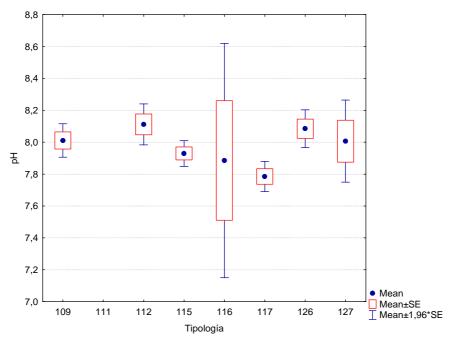



Figura 70. Distribución de frecuencias del pH (unidades de pH)

El pH resultó significativamente diferente entre tipos (**Tabla 27**; **Figura 71**; **Tabla 29**). Los tipos más extremos fueron el tipo 117 (*Grandes ejea en ambiente mediterráneo*), con una media de 7,79 y el tipo 112 (*Ríos de montaña mediterránea calcárea*), con una media de 8,11.

Figura 71. pH (unidades de pH) para las diferentes tipologías de ríos durante la campaña de muestreo de 2010

TABLA 29
pH promedio, desviación estándar (SD), valor máximo y mínimo y número de casos (N) para los diferentes tipos de ríos durante el muestreo de 2010.

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	28	8.01	7.49	8.60	0.28
111	Ríos de montaña mediterránea silícea	0				
112	Ríos de montaña mediterránea calcárea	44	8.11	7.42	10.41	0.43
115	Ejes mediterráneo-continentales poco mineralizados	24	7.93	7.54	8.29	0.20
116	Ejes mediterráneo-continentales mineralizados	2	7.89	7.51	8.26	0.53
117	Grandes ejes en ambiente mediterráneo	8	7.79	7.61	8.06	0.14
126	Ríos de montaña húmeda calcárea	22	8.09	7.62	8.77	0.28
127	Ríos de Alta Montaña	6	8.01	7.66	8.50	0.32

En la **Figura 72**, se representa la distribución espacial de los valores de pH medidos. En ella, se osberva que gran parte de los valores de pH más elevados (pH básico) correspondieron a las estaciones de muestreo situadas en zonas de montaña de geología calcárea.

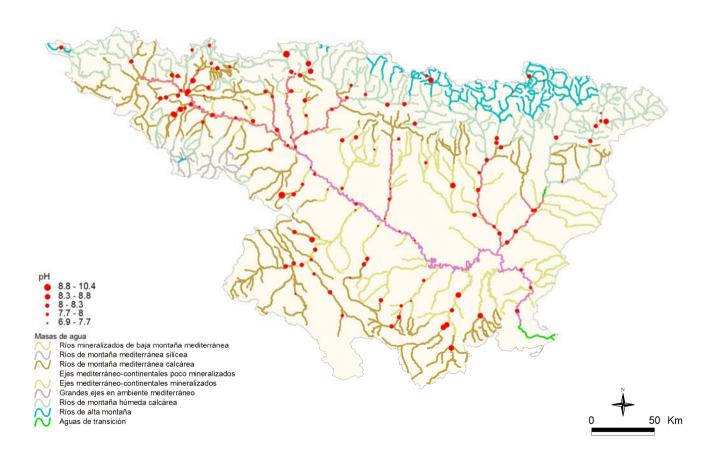


Figura 72. pH medido en las estaciones de muestreo en 2010

4.4.3 Conductividad

Los valores de conductividad oscilaron entre los 101 μS·cm⁻¹ de la estación 0644 del río Bayas en Aldaroa, hasta los 38932 μS·cm⁻¹ de la 2238 del Arroyo Omecillo en Salinas de Añana, cuya elevada conductividad es debida a una elevada salinidad natural de origen geológico.LA media para el total de las estaciones fue de 1168 μS·cm⁻¹. El hecho de que la conductividad eléctrica esté influenciada en gran medida por las características geológicas naturales, además de por la carga de contaminantes, hace de este parámetro un pobre indicador de contaminación a escala de cuenca, donde la variabilidad geológica se podría superponer, en determinados casos, sobre los posibles focos contaminantes difusos o puntuales. La distribución de frecuencias se presenta en la **Figura 73.**

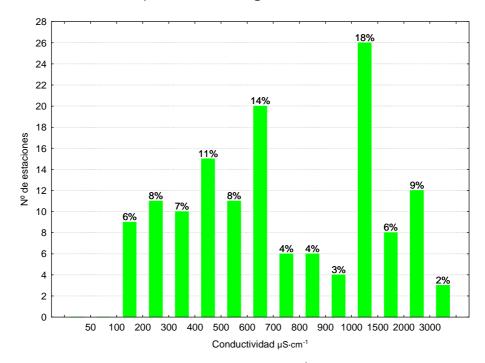


Figura 73. Distribución de frecuencias de la conductividad (μS⋅cm⁻¹)

En la figura superior se observa que el 34% de las estaciones presentó valores inferiores a 500 μS·cm⁻¹. Sólo un 2 % presentó valores superiores a 3000 μS·cm⁻¹.

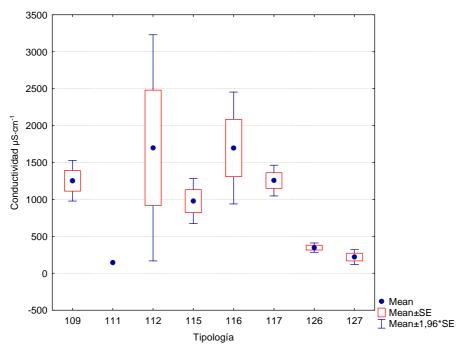


Figura 74. Conductividad (μS·cm⁻¹) para las diferentes tipologías de ríos en las estaciones muestreadas durante la campaña de 2010

Se observaron diferencias entre los diferentes tipos de masas fluviales (**Tabla 27**; **Figura 74**; **Tabla 30**), con los tipos 112 (conductividad media =1699 μS·cm⁻¹) y 111 (145 μS·cm⁻¹) presentando los contrastes más marcados. La variabilidad observada fue muy acentuada en algunos grupos, como el 112 (*Ríos de montaña mediterránea calcárea*) o el 115 (*Ejes mediterráneo-continentales poco mineralizados*).

TABLA 30

Conductividad media, desviación estándar (SD), valor máximo y mínimo y número de casos (N) para los diferentes tipos de ríos (valores en µS·cm⁻¹)

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	27	1252.67	397	2851	727.56
111	Ríos de montaña mediterránea silícea	1	145.00	145	145	
112	Ríos de montaña mediterránea calcárea	49	1699.71	242	38932	5471.40
115	Ejes mediterráneo-continentales poco mineralizados	24	977.79	245	3581	758.55
116	Ejes mediterráneo-continentales mineralizados	2	1696.50	1310	2083	546.59
117	Grandes ejes en ambiente mediterráneo	9	1256.33	970	1766	318.63
126	Ríos de montaña húmeda calcárea	23	347.13	101	686	154.81
127	Ríos de Alta Montaña	6	219.83	129	472	125.72

Al representar cartográficamente los valores de conductividad medidos en las estaciones de la red de control operativos, **Figura 75**, se aprecia claramente como el eje principal del río Ebro,

junto con las partes medias y bajas de los principales tributarios, son las zonas que presentaron los valores más elevados de conductividad, esto pudo ser debido, en algunos casos, a causas naturales de origen geológico, como por ejemplo la predominancia de rocas sedimentarias con elevados contenidos de sales, cloruros, sulfatos, etc. En otros casos los tramos medios y bajos de los ríos presentan una elevada superficie agrícola tanto extensiva como intensiva, así como una elevada carga poblacional e industrial. También se puede dar una combinación de estas causas.

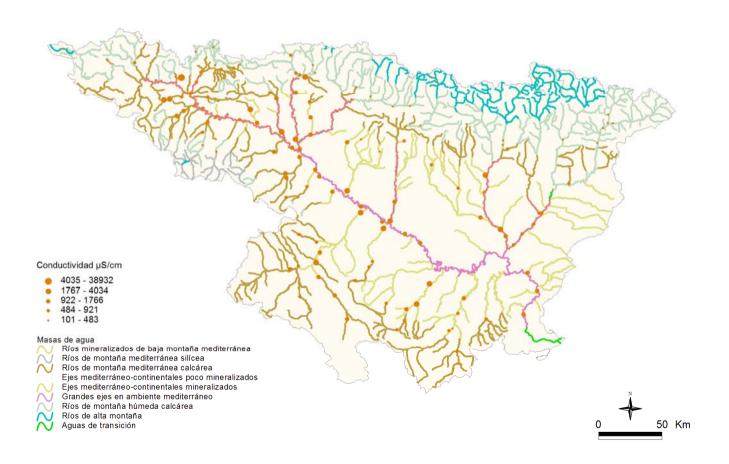


Figura 75. Conductividad (μS·cm⁻¹) medida en las estaciones de muestreo en 2010

4.4.4 Oxígeno disuelto

Se midieron valores de oxígeno disuelto, en un total de 143 estaciones de la red de control operativo, la media fue de 9,2 mg/L. Los valores de las estaciones muestreadas oscilaron entre los 3,22 mg/L del río Zadorra en Salvatierra hasta los 13,57 mg/L medidos en la estación 0068 del río Arakil en Asiain. Un 60% de las estaciones presentó valores comprendidos en el rango 8-10 mg/L, **Figura 76.**

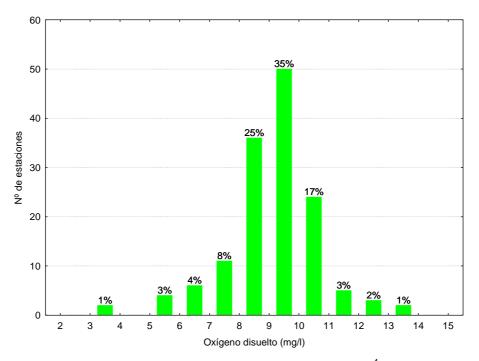
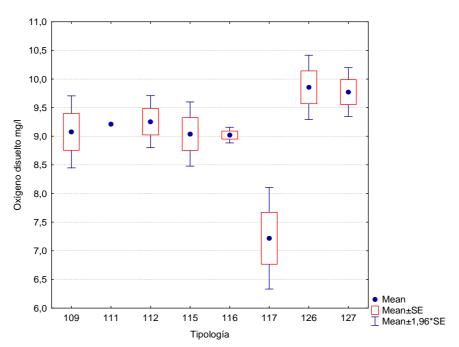



Figura 76. Distribución de frecuencias del oxígeno disuelto (mg·L⁻¹)

Se encontraron diferencias entre tipos de ríos (**Tabla 27**). Las diferencias de valores de oxígeno observadas en los diferentes tipos de ríos se muestran en la **Figura 77** y en la **Tabla 31**. Los valores más bajos se midieron en tipo 117 (*Grandes ejes en ambiente mediterráneo*).

Figura 77. Concentraciones de oxígeno (mg·L⁻¹) para las diferentes tipologías de ríos en las estaciones muestreadas durante la campaña de 2010

TABLA 31

Concentración de oxígeno media, desviación estándar (SD), valor máximo y mínimo y número de casos (N) para los diferentes tipos de ríos en 2010 (valores en mg·L⁻¹)

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	29	9.08	3.30	12.09	1.73
111	Ríos de montaña mediterránea silícea	1	9.21	9.21	9.21	
112	Ríos de montaña mediterránea calcárea	49	9.25	3.22	13.34	1.62
115	Ejes mediterráneo-continentales poco mineralizados	24	9.04	6.33	11.40	1.40
116	Ejes mediterráneo-continentales mineralizados	2	9.02	8.95	9.09	0.10
117	Grandes ejes en ambiente mediterráneo	9	7.22	5.13	9.62	1.36
126	Ríos de montaña húmeda calcárea	23	9.85	8.11	13.57	1.37
127	Ríos de Alta Montaña	6	9.77	8.88	10.40	0.53

En la **Figura 78** se muestran espacialmente los valores de concentración de oxígeno disuelto a lo largo de toda la Cuenca. En ella se observa que los valores más bajos correspondieron a estaciones localizadas en el eje del Ebro.

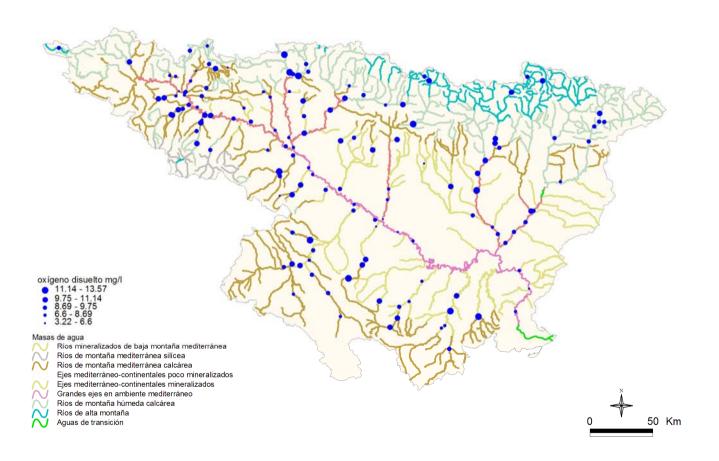


Figura 78. Concentración de oxígeno (mg·L⁻¹) medida en las estaciones de muestreo en 2010

4.5 Resultados hidromorfológicos

En el **Anexo 1** se incluyen los índices QBR e IHF obtenidos durante los muestreos realizados en el año 2010.

Se realizaron contrastes no paramétricos de Kruskal-Wallis para testar diferencias entre los distintos tipos de ríos. Los resultados de estos análisis se sintetizan en la **Tabla 32**.

TABLA 32

TESTS DE KRUSKAL-WALLIS H POR TIPOS*

Se incluyen los valores de probabilidad p, en rojo y negrita aquellas diferencias significativas

Variable	Н	N	р
IHF	7,57	140	0,37
QBR	20,91	142	0,004

Los comentarios para estas dos tablas se realizan, para cada parámetro, en los puntos siguientes.

4.5.1 Índice de Hábitat Fluvial (IHF)

Se aplicó el índice de habitat fluvial, IHF, en un total de 140 estaciones. Los valores oscilaron entre los 48 puntos de la estación 2060 situada en el Bco. La Violada en Zuera y los 79 de la estación 1070 del río Salazar en Aspurz. Dos tercios de las estaciones obtuvieron valores en el rango 60-70 puntos, **Figura 79**. El valor medio para el conjunto de la estaciones fue de 64 puntos.

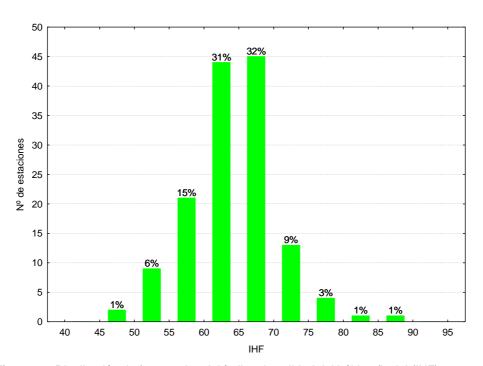


Figura 79. Distribución de frecuencias del índice de calidad del hábitat fluvial (IHF) en 2010

Las diferencias entre tipos de masas de agua no fueron significativas (**Tabla 32**). Los valores más elevados del índice correspondieron al tipo 111 (*Ríos de montaña mediterránea silícea*) y los más bajos a los tipos 116 (*Ejes mediterráneo-continentales mineralizados*) y 117 (*Grandes ejes en ambiente mediterráneo*), las diferencias entre el resto de las tipologías fueron muy bajas (**Figura 80**; **Tabla 33**).

Figura 80. Distribución del índice de calidad del hábitat fluvial (IHF) por tipos de ríos

TABLA 33

Valor medio del índice de calidad del índice de hábitat fluvial (IHF), desviación estándar (SD), valores máximo y mínimo, y número de casos (N) para los diferentes tipos de ríos muestreados en 2010

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	29	65.14	48	78	6.23
111	Ríos de montaña mediterránea silícea	1	68.00	68	68	
112	Ríos de montaña mediterránea calcárea	48	65.25	50	88	7.27
115	Ejes mediterráneo-continentales poco mineralizados	23	64.30	53	78	5.39
116	Ejes mediterráneo-continentales mineralizados	2	63.00	59	67	5.66
117	Grandes ejes en ambiente mediterráneo	9	63.00	59	66	2.60
126	Ríos de montaña húmeda calcárea	23	63.74	51	79	6.15
127	Ríos de Alta Montaña	5	60.40	56	63	2.61

En la **Figura 81** se muestra la distribución de los valores de IHF obtenidos en la diferentes estaciones muestreadas, destacan los elevados valores obtenidos en algunas estaciones de la margen derecha, por ejemplo, el tramo medio del río Guadalope.

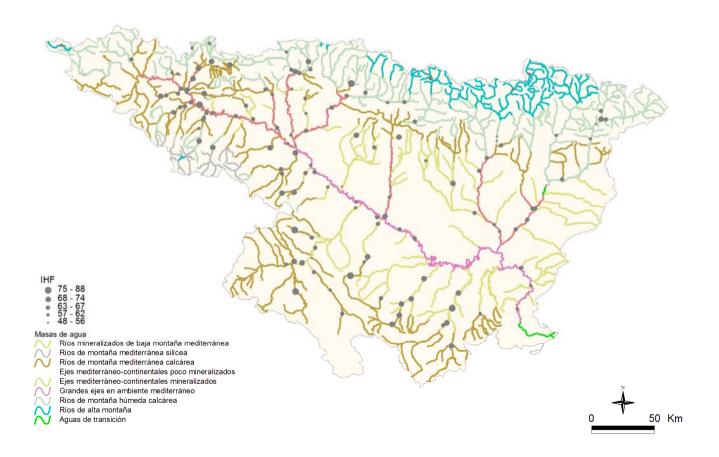


Figura 81. Distribución de los valores de IHF en las estaciones de muestreo de la Cuenca del Ebro en 2010

4.5.2 Índice de Calidad del Bosque de Ribera (QBR)

La calidad de las riberas, evaluada mediante el índice QBR, fue bastante variable (**Figura 82**). Los valores oscilaron entre los 0 puntos obtenidos en la estación 1038 (río Linares en Mendavía, en la que en 2009 realizaron una limpieza de las riberas) hasta los máximos de 100 obtenidos en numerosas ocasiones, como por ejemplo en la estación 0033 (río Alcanadre en Peralta de Alcofea) o en la 0241 del río Najerilla en Anguiano, entre otras. En total un 41 % de las estaciones obtuvieron valores elevados que serían indicativos de la buena calidad en la que se encuentra la vegetación de ribera.

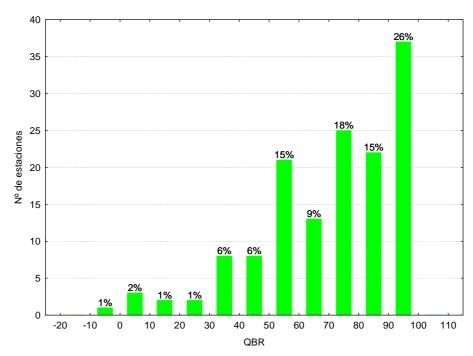


Figura 82. Distribución de frecuencias del índice de calidad del bosque de ribera (QBR) en 2010

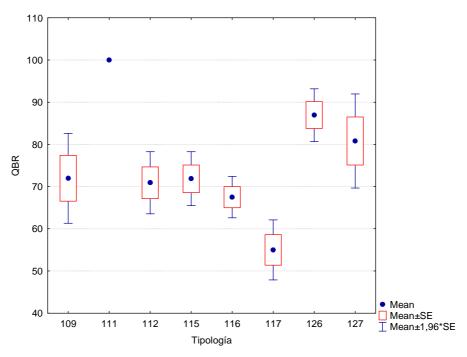


Figura 83. Distribución del índice de calidad del bosque de ribera (QBR) por tipos de ríos

Las diferencias entre tipos de masas de agua fueron significativas en el caso del QBR (**Tabla 32**), con los tipos 111 (*ríos de montaña mediterránea silícea*), 126 (*ríos de montaña húmeda calcárea*) y 127 (*ríos de alta montaña*) presentando riberas de mayor calidad y el tipo 117 (*grandes ejes en ambiente mediterráneo*) las de peor calidad (**Figuras 83; Tabla 34**).

TABLA 34

Valor medio del índice de calidad del bosque de ribera (QBR), desviación estándar (SD), valores máximo y mínimo y número de casos (N) para los diferentes tipos de ríos muestreados en 2010

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	28	71.96	0	100	28.69
111	Ríos de montaña mediterránea silícea	1	100.00	100	100	
112	Ríos de montaña mediterránea calcárea	49	70.92	5	100	26.31
115	Ejes mediterráneo-continentales poco mineralizados	24	71.88	40	100	15.94
116	Ejes mediterráneo-continentales mineralizados	2	67.50	65	70	3.54
117	Grandes ejes en ambiente mediterráneo	9	55.00	35	75	10.90
126	Ríos de montaña húmeda calcárea	23	86.96	50	100	15.28
127	Ríos de Alta Montaña	6	80.83	65	100	13.93

Las estaciones que presentaron una mayor variabilidad entre ellas fueron las correspondientes a los tipos 109, 112 y 115.

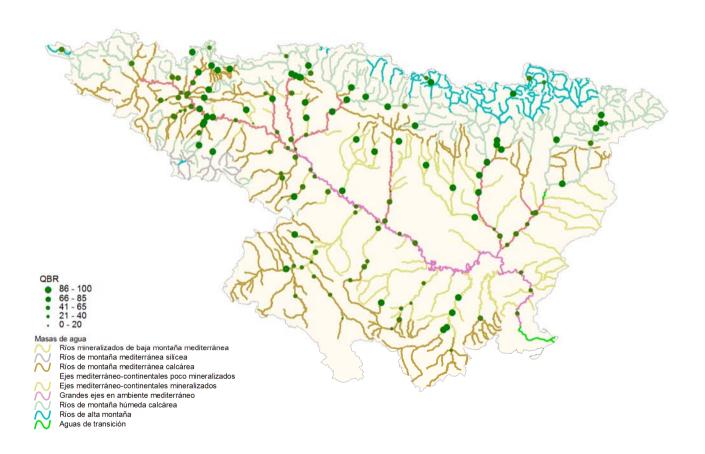


Figura 84. Distribución espacial de los valores de QBR de las estaciones muestreadas en 2010

Al representar en un mapa de la cuenca los valores obtenidos del QBR (**Figura 84**), se puede observar que los valores más elevados del QBR se corresponden con zonas de cabecera y tramos de río con baja presión agrícola, o que se hallan encajados en el terreno y presentan unas riberas inaccesibles. Existe alguna excepción aislada que se correspondería con masas de agua que discurren por fondos de valle y zonas cercanas a poblaciones. En cambio, los valores más bajos se hallaron en tramos urbanos y en aquellas cuencas en las que la pendiente del terreno es baja y permite el cultivo cerca del cauce.

4.6 Estado Ecológico

Una vez analizados los resultados de los indicadores biológicos, hidromorfológicos y físicoquímicos para las diferentes estaciones y masas de agua estudiadas, y en aplicación de la Directiva Marco del Agua (DMA, DOCE 2000), se ha procedido a valorar el estado ecológico de las masas de agua muestreadas en el año 2010.

A este respecto, en un primer apartado se han utilizado las métricas basadas en macroinvertebrados, macrófitos y diatomeas, obteniéndose el estado ecológico según indicadores biológicos.

En el siguiente apartado, se incluye un avance del estado ecológico de las masas de agua estudiadas sobre la base de los indicadores hidromorfológicos, teniendo en cuenta los resultados de los índices QBR e IHF en el año 2010 respectivamente.

Al no disponer de datos de todos los indicadores físico-químicos no se ha calculado el estado en base a estos indicadores.

Se incluye también un análisis de las estaciones que no cumplen los objetivos de la DMA, así como las posibles causas y recomendaciones de control.

4.6.1 Estado Ecológico

En el **Cuadro 4** se muestran los valores de estado ecológico en cada una de las estaciones de muestreo de 2010.

CUADRO 4

ESTADO ECOLÓGICO

MEDIANTE INDICADORES BIOLÓGICOS

MB (azul) = muy bueno; B (verde) = bueno; Mo (amarillo) = moderado;

D (anaranjado) = deficiente; M (rojo) = malo.

En Blanco estaciones que no se pudieron muestrear por diversas causas

CEMAS	Toponimia	IdMasa	Tipología	IBMWP	EQR IBMWP	EE- IBMWP	IPS	EQR IPS	EE- IPS	IVAM	EE- IVAM	EE-BIO- sin IVAM	EE- con- IVAM
0001	Ebro / Miranda de Ebro	403	115	132	0.88	В				2.40	D	В	D
0003	Ega / Andosilla	414	115	131	0.87	В				5.03	В	В	В
0004	Arga / Funes	423	115	113	0.75	В	12.10	0.71	В	3.60	Мо	В	Mo
0005	Aragón / Caparroso	421	115	122	0.81	В				4.83	В	В	В
0009	Jalón / Huérmeda	443	116										
0010	Jiloca / Daroca	323	112	100	0.67	Mo				3.83	Мо	Мо	Mo
0013	Ésera / Graus	371	112	117	0.78	В	18.80	1.11	MB	5.22	В	В	В
0014	Martín / Hijar	135	109	64	0.40	Mo	15.20	0.87	В			Мо	Mo
0015	Guadalope / der. Acequia vieja de Alcañiz	143	109	149	0.93	MB	16.30	0.93	В	4.88	В	В	В
0017	Cinca / Fraga	441	115	92	0.61	Мо		_		3.29	Мо	Мо	Mo
0022	Valira / Anserall (Castellciutat)	617	126	129	0.80	MB	18.60	1.05	MB	5.81	MB	MB	MB
0023	Segre / Seo de Urgel	589	126	176	1.09	MB	19.70	1.11	MB	5.40	В	MB	В
0024	Segre / Lleida	432	115	59	0.39	D				3.76	Мо	D	D
0025	Segre / Serós	433	115				13.70	0.81	В			В	В
0027	Ebro / Tortosa	463	117					_		-			
0032	Guatizalema / Peralta de Alcofea	160	109	134	0.84	MB	16.00	0.91	В	4.40	Мо	В	Мо
0033	Alcanadre / Peralta de Alcofea	157	109	168	1.05	MB	18.70	1.07	MB	6.29	MB	MB	MB
0038	Najerilla / Torremontalbo	274	112	119	0.79	В	19.30	1.14	MB			В	В
0050	Tirón / Cuzcurrita	261	112	131	0.87	В	16.00	0.94	MB	5.08	В	В	В

CEMAS	Toponimia	IdMasa	Tipología	IBMWP	EQR IBMWP	EE- IBMWP	IPS	EQR IPS	EE- IPS	IVAM	EE-	EE-BIO- sin IVAM	EE- con- IVAM
0060	Arba de Luesia / Tauste	106	109	41	0.26	D	11.00	0.63	Мо			D	D
0068	Arakil / Asiain	555	126	149	0.93	MB				2.35	D	MB	D
0071	Ega / Estella (aguas arriba)	1742	112	104	0.69	В		_		_		В	В
0074	Zadorra / Arce - Miranda de Ebro	406	115	86	0.57	Мо	13.00	0.76	В			Mo	Mo
0087	Jalón / Grisén	446	116	86	0.57	D	13.10	0.77	В	4.24	Мо	D	D
0089	Gállego / Zaragoza	426	115	56	0.37	D	8.80	0.52	Mo	4.52	В	D	D
0090	Queiles / Azud alimentación Emb. del Val	300	112										
0092	Nela / Trespaderne	232	112										
0093	Oca / Oña	227	112										
0095	Vero / Barbastro	153	109	65	0.41	Мо	6.60	0.38	D	3.43	Мо	D	D
0096	Segre / Balaguer	957	115										
0097	Noguera Ribagorzana / Deriv. canal de Piñana	820	112										
0101	Aragón / Yesa	417	115	132	0.88	В	17.00	1.00	MB	6.03	MB	В	В
0106	Guadalope / Santolea - Derivación Ac. Mayor	951	109	168	1.05	MB						MB	MB
0118	Martín / Oliete	133	109	119	0.74	В	9.60	0.55	Mo	5.13	В	Мо	Мо
0120	Ebro / Mendavia (Der. Canal Lodosa)	413	115										
0126	Jalón / Ateca (aguas arriba)	107	109										
0146	Noguera Pallaresa / Pobla de Segur	645	126	170	1.06	MB	19.60	1.11	МВ	5.77	MB	MB	MB
0159	Arga / Huarte	541	126	151	0.94	MB	14.90	0.84	В	5.33	В	В	В
0162	Ebro / Pignatelli	449	117	108	0.72	В				3.29	Мо	В	Мо
0163	Ebro / Ascó	460	117										
0176	Matarraña / Nonaspe	167	109										
0179	Zadorra / Vitoria -Trespuentes	249	112	91	0.61	Мо	10.10	0.59	Мо	4.57	В	Mo	Mo

CEMAS	Toponimia	IdMasa	Tipología	IBMWP	EQR IBMWP	EE- IBMWP	IPS	EQR IPS	EE- IPS	IVAM	EE- IVAM	EE-BIO- sin IVAM	EE- con- IVAM
0180	Zadorra / Entre Mendivil y Durana	243	126	144	0.89	MB				6.05	MB	MB	MB
0184	Manubles / Ateca	321	112	103	0.69	В	11.40	0.67	Мо	5.24	В	Мо	Мо
0189	Oroncillo / Orón	239	112	78	0.52	Мо	13.20	0.78	В			Мо	Мо
0203	Híjar / Espinilla	841	127	200	1.27	MB	19.30	1.03	MB	5.30	В	MB	В
0205	Aragón / Cáseda	420	115	172	1.15	MB	17.30	1.02	MB	5.02	В	MB	В
0206	Segre / Plá de San Tirs	622	126	136	0.84	MB	18.40	1.04	MB			MB	MB
0207	Segre / Vilanova de la Barca	428	115	76	0.51	Мо	12.70	0.75	В	3.83	Мо	Мо	Мо
0208	Ebro / Haro	408	115										
0211	Ebro / Presa Pina	454	117	106	0.71	В				4.08	Mo	В	Мо
0214	Alhama / Alfaro	97	109	94	0.59	Mo						Мо	Мо
0217	Arga / Ororbia	548	126	80	0.50	Mo	9.30	0.53	Мо	4.20	Мо	Мо	Мо
0218	Isuela / Pompenillo	163	109	38	0.24	D	7.20	0.41	D	3.83	Mo	D	D
0219	Segre / Torres de Segre	433	115	58	0.39	D	13.40	0.79	В	4.61	В	D	D
0225	Clamor Amarga / Aguas abajo de Zaidín	166	109	54	0.34	D						D	D
0226	Alcanadre / Ontiñena	165	109	124	0.78	В	12.60	0.72	Мо			Мо	Мо
0227	Flumen / Sariñena	164	109				•						
0241	Najerilla / Anguiano	502	126	229	1.42	MB	19.30	1.09	MB	5.90	MB	MB	MB
0242	Cidacos / Autol	288	112	127	0.85	В	15.90	0.94	В	4.00	Мо	В	Мо
0243	Alhama / Venta de Baños de Fitero	297	112	186	1.24	MB	18.80	1.11	MB	5.49	В	MB	В
0247	Gállego / Villanueva	426	115	117	0.78	В	9.10	0.54	Мо			Мо	Мо
0504	Ebro / Rincón de Soto	416	115	115	0.77	В				3.57	Mo	В	Мо
0505	Ebro / Alfaro	447	117				-						
0506	Ebro / Tudela	448	117	118	0.79	В						В	В
0508	Ebro / Gallur (abto., aguas arriba río Arba)	450	117										
0511	Ebro / Benifallet	462	117										

CEMAS	Toponimia	IdMasa	Tipología	IBMWP	EQR IBMWP	EE- IBMWP	IPS	EQR IPS	EE- IPS	IVAM	EE-	EE-BIO- sin IVAM	EE- con- IVAM
0512	Ebro / Xerta	463	117	119	0.79	В	14.10	0.83	В	3.91	Мо	В	Mo
0528	Jubera / Murillo de Río Leza	277	112										
0530	Aragón / Milagro	424	115	120	0.80	В				3.60	Mo	В	Mo
0537	Arba de Biel / Luna	103	109	159	0.99	MB	18.10	1.03	MB	6.28	MB	MB	MB
0540	Fontobal / Ayerbe	116	109	188	1.18	MB	19.00	1.09	MB	5.73	MB	MB	MB
0541	Huecha / Bulbuente	302	112										
0561	Gállego / Jabarrella	575	126	201	1.25	MB	17.70	1.00	MB	5.64	В	MB	В
0562	Cinca / Aguas abajo Monzón (Conchel)	437	115	119	0.79	В	14.50	0.85	В	3.86	Мо	В	Мо
0564	Zadorra / Salvatierra	241	112	46	0.31	D		•		<u>-</u>		D	D
0565	Huerva / Fuente de la Junquera	115	109	54	0.34	D	5.80	0.33	D	2.86	D	D	D
0569	Arakil / Alsasua	551	126										
0571	Ebro / Logroño - Varea	411	115	140	0.93	MB	13.70	0.81	В	4.09	Мо	В	Мо
0572	Ega / Arinzano	285	112	166	1.11	MB						MB	MB
0574	Najerilla / Nájera, Aguas abajo	270	112	138	0.92	MB	19.90	1.17	MB	3.20	Мо	MB	Мо
0577	Arga / Puentelarreina	422	115										
0582	Canaleta / Bot	178	109										
0586	Jalón / Sabiñán	444	116	52	0.35	D				4.74	В	D	D
0592	Ebro / Pina de Ebro	455	117	107	0.71	В				3.60	Мо	В	Mo
0593	Jalón / Terrer	108	109	89	0.56	Мо	16.40	0.94	В	2.00	М	Мо	M
0595	Ebro / San Vicente de la Sonsierra	409	115	66	0.44	D				4.35	Мо	D	D
0618	Gállego / Embalse del Gállego	848	127	103	0.65	В	16.50	0.88	В	7.00	MB	В	В
0621	Segre / Derivación Canal Urgell	959	126				-			_			
0622	Gállego / Derivación Acequia Urdana	426	115										

CEMAS	Toponimia	IdMasa	Tipología	IBMWP	EQR IBMWP	EE- IBMWP	IPS	EQR IPS	EE- IPS	IVAM	EE-	EE-BIO- sin IVAM	EE- con- IVAM
0627	Noguera Ribagorzana / Derivación Acequia Corbins	431	115	63	0.42	D	13.70	0.81	В	5.00	В	D	D
0644	Bayas / Aldaroa	485	126	227	1.41	MB	19.40	1.10	MB	5.47	В	MB	В
0657	Ebro / Zaragoza - Almozara	452	117	90	0.60	Мо				3.08	D	Мо	D
0701	Omecillo / Espejo	1702	112	157	1.05	MB	17.80	1.05	MB	5.31	В	MB	В
0702	Escá / Sigüés	526	126	198	1.23	MB	18.90	1.07	MB	5.44	В	MB	В
0703	Arba de Luesia / Malpica de Arba	100	109	164	1.03	MB	19.70	1.13	MB	6.39	MB	MB	MB
0705	Garona / Es Bordes	786	127	133	0.84	В	17.80	0.95	MB	5.26	В	В	В
1028	Zadorra / La Puebla de Arganzón	405	115	82	0.55	Мо	12.40	0.73	В	4.78	В	Мо	Мо
1032	Ayuda / Carretera Miranda	254	112	148	0.99	MB	16.00	0.94	MB	5.53	В	MB	В
1034	Inglares / Peñacerrada	255	112	104	0.69	В	18.10	1.06	MB	5.73	MB	В	В
1036	Linares / Espronceda	278	112										
1037	Linares / Torres del Río	91	109	146	0.91	MB						MB	MB
1038	Linares / Mendavia	91	109	90	0.56	Mo				4.25	Mo	Мо	Mo
1047	Aragón / Puentelarreina de Jaca	519	126	166	1.03	MB	15.80	0.89	В	5.09	В	В	В
1070	Salazar / Aspurz	540	126	217	1.35	MB	16.40	0.93	MB	4.77	В	MB	В
1119	Corp / Vilanova de la Barca	151	109										
1123	Cinca / El Grado	678	126										
1135	Ésera / Perarrua	679	126	109	0.68	В	18.30	1.03	MB	6.42	MB	В	В
1139	Isábena / Capella E.A. 47	372	112	143	0.95	MB	19.30	1.14	MB	5.36	В	MB	В
1145	Ciurana / Gratallops	171	109										
1156	Ebro / Puente de El Ciego	410	115	120	0.80	В	11.70	0.69	Mo	4.42	В	Mo	Mo
1157	Ebro / Mendavia	412	115										
1164	Ebro / Alagón	451	117	118	0.79	В						В	В
1167	Ebro / Mora de Ebro	461	117	73	0.49	Мо				3.08	D	Мо	D
1177	Tirón / Haro	267	112	131	0.87	В	14.50	0.85	В			В	В

CEMAS	Toponimia	IdMasa	Tipología	IBMWP	EQR IBMWP	EE- IBMWP	IPS	EQR IPS	EE- IPS	IVAM	EE-	EE-BIO- sin IVAM	EE- con- IVAM
1184	Iregua / Puente De Almarza	203	111	172	0.96	MB	19.60	1.19	MB	5.79	MB	MB	MB
1203	Jiloca / Morata de Jiloca	323	112	33	0.22	D	14.80	0.87	В	4.39	Мо	D	D
1219	Huerva / Cerveruela	821	112	218	1.45	MB	10.60	0.62	Мо			Mo	Мо
1227	Aguas Vivas / Azaila	129	109										
1235	Guadalope / Mas de las Matas	137	109	197	1.23	MB	17.00	0.97	MB	4.73	В	MB	В
1238	Guadalope / Alcañiz (aguas abajo)	145	109	92	0.58	Мо	14.00	0.80	В	3.29	Мо	Мо	Мо
1251	Queiles / Los Fayos	300	112	234	1.56	MB	12.80	0.75	В	5.03	В	В	В
1252	Queiles / Novallas	301	112	87	0.58	Мо	10.20	0.60	Mo	3.50	Mo	Mo	Mo
1260	Jalón / Bubierca	314	112	107	0.71	В						В	В
1263	Piedra / Cimballa	315	112	143	0.95	MB	17.40	1.02	MB	3.48	Mo	MB	Mo
1269	Añamaza / Casetas de Barnueva	298	112	163	1.09	MB	13.50	0.79	В	4.00	Мо	В	Mo
1277	Arba de Riguel / Sádaba	105	109	138	0.86	MB	18.10	1.03	MB	4.91	В	MB	В
1297	Ebro / Flix (aguas abajo de la presa)	459	117							3.46	Мо		Мо
1298	Garona / Arties	782	127	134	0.85	В	18.50	0.99	MB	6.48	MB	В	В
1299	Garona / Bossost	788	127				_	-					
1304	Sio / Balaguer E.A. 182	148	109										
1306	Ebro / Ircio	407	115	77	0.51	Мо	8.40	0.49	Мо			Mo	Мо
1307	Zidacos / Barasoain	292	112	167	1.11	MB				5.24	В	MB	В
1308	Zidacos / Olite	94	109	135	0.84	MB				4.19	Mo	MB	Mo
1311	Arga / Landaben -Pamplona	546	126	147	0.91	MB	12.20	0.69	Мо			Mo	Мо
1314	Salado / Mendigorria	96	109										
1315	Ulzama / Olave	544	126	155	0.96	MB				4.90	В	MB	В
1317	Larraun / Urritza	554	126	93	0.58	Мо	13.10	0.74	В	5.40	В	Mo	Мо
1332	Oroncillo / Pancorbo	239	112	88	0.59	Мо	15.80	0.93	В	4.78	В	Mo	Mo
1338	Oja / Casalarreina	264	112	121	0.81	В	9.20	0.54	Мо	5.90	MB	Mo	Mo
1350	Huecha / Mallén	99	109	112	0.70	В				4.70	В	В	В

CEMAS	Toponimia	IdMasa	Tipología	IBMWP	EQR IBMWP	EE- IBMWP	IPS	EQR IPS	EE- IPS	IVAM	EE-	EE-BIO- sin IVAM	EE- con- IVAM
1351	Val / Agreda	861	112	78	0.52	Мо	5.90	0.35	D	4.49	В	D	D
1358	Jiloca / Calamocha	322	112	101	0.67	В	12.70	0.75	В	5.68	В	В	В
1365	Martín / Montalbán	342	112	152	1.01	MB				4.36	Мо	MB	Mo
1368	Escuriza / Ariño	134	109	132	0.83	MB	17.00	0.97	MB	5.11	В	MB	В
1376	Guadalope / Palanca-Caspe	911	109							_			
1382	Huerva / Aguas abajo Villanueva de Huerva	822	109	92	0.58	Мо	18.90	1.08	MB			Мо	Mo
1403	Aranda / Aranda del Moncayo	823	112	120	0.80	В	14.70	0.86	В	4.00	Mo	В	Mo
1404	Aranda / Brea	110	109	99	0.62	В	12.80	0.73	В	4.24	Мо	В	Mo
1411	Peregiles / Puente Antigua N-II	324	112	71	0.47	Мо	14.50	0.85	В	3.71	Мо	Мо	Mo
1420	Valira / Aduana	613	126	139	0.86	MB	18.10	1.02	MB	5.81	MB	MB	MB
1430	Cárdenas / Cárdenas	269	112	118	0.79	В	19.80	1.16	MB	5.58	В	В	В
1440	Trueba / Villacomparada	478	126	167	1.04	MB	18.10	1.02	MB	5.55	В	MB	В
1453	Segre / Organyá	636	126	128	0.80	MB	17.10	0.97	MB	5.83	MB	MB	MB
1471	Matarraña / Aguas arriba de la desembocadura del Tastavins	391	112	190	1.27	MB	16.60	0.98	MB	5.39	В	МВ	В
1476	Ésera / Desembocadura	434	115	148	0.99	MB	19.70	1.16	MB	5.73	MB	MB	MB
2017	Cámaras / Herrera de los Navarros	127	109										
2053	Robo / Obanos	95	109	86	0.54	Мо						Мо	Mo
2060	Barranco de la Violada / Zuera (aguas arriba)	120	109	53	0.33	D				4.11	Мо	D	D
2068	Regallo / Valmuel	136	109										
2069	Alchozasa / Alcorisa	141	109										
2087	Oroncillo / Santa María de Ribarredonda	238	112	146	0.97	MB	13.60	0.80	В	4.25	Мо	В	Мо
2090	Saraso / Condado de Treviño	251	112	150	1.00	MB		!		_		MB	MB
2095	Relachigo / Herramélluri	260	112	123	0.82	В	14.40	0.85	В	4.17	Мо	В	Мо
2101	Yalde / Somalo	273	112	63	0.42	D						D	D

CEMAS	Toponimia	IdMasa	Tipología	IBMWP	EQR IBMWP	EE- IBMWP	IPS	EQR IPS	EE- IPS	IVAM	EE-	EE-BIO- sin IVAM	EE- con- IVAM
2104	Jalón / Alhama de Aragón	312	112	81	0.54	Мо						Мо	Mo
2107	Martín / Obón	344	112	131	0.87	В	14.70	0.86	В	4.59	В	В	В
2110	Celumbres / Forcall	354	112	144	0.96	MB	18.60	1.09	MB	4.94	В	MB	В
2113	Boix / La Pineda	362	112	210	1.40	MB				4.22	Мо	MB	Mo
2124	Ebro / Miranda de Ebro (aguas abajo)	404	115										
2126	Cinca / Santalecina	438	115										
2129	Jalón / Ricla (ag. arriba)	445	116										
2132	Virga / Cabañas de Virtus	466	126										
2134	Hijedo / Bascones de Ebro	471	126										
2137	Urquiola / Otxandio	488	126	151	0.94	MB	18.50	1.05	MB	5.94	MB	MB	MB
2140	Gas / Jaca	510	126	166	1.03	MB	4.70	0.27	D	4.97	В	D	D
2147	Juslapeña / Arazuri	547	126										
2156	Pallerols / Noves de Segres	629	126				15.70	0.89	В			В	В
2179	Ésera / Camping Aneto	766	127	125	0.79	В	19.80	1.06	MB			В	В
2190	Tirón / Leiva	805	112	93	0.62	Mo	16.00	0.94	MB	4.65	В	Мо	Мо
2199	Escarra / Escarrilla	964	127	189	1.20	MB	19.60	1.05	MB	6.38	MB	MB	MB
2214	Huerva / Tosos	836	112	163	1.09	MB	18.90	1.11	MB			MB	MB
2215	Alegría / Matauco	244	112				11.30	0.66	Мо	4.87	В	Mo	Mo
2238	Arroyo Omecillo / Salinas de Añana	1703	112	39	0.26	D	6.90	0.41	D	4.92	В	D	D
2243	Noguera de Tor / Barruera	741	127										
3000	Queiles / Aguas arriba de Tudela	98	109										
3001	Elorz / Pamplona	294	112	89	0.59	Мо	10.10	0.59	Mo	2.40	D	Мо	D
3005	Llobregós / Ponts	147	109										
3006	Cervera / Cervera (aguas arriba)	149	109										

CEMAS	Toponimia	IdMasa	Tipología	IBMWP	EQR IBMWP	EE- IBMWP	IPS	EQR IPS	EE- IPS	IVAM	EE-	EE-BIO- sin IVAM	EE- con- IVAM
3011	Aguas Vivas / Aguas arriba azud de Blesa	333	112	173	1.15	MB				5.29	В	MB	В

4.6.1.1 Determinación del estado ecológico con macroinvertebrados (IBMWP)

Para la determinación o evaluación del estado ecológico mediante el uso de macroinvertebrados bentónicos se utilizó el índice IBMWP. Los límites utilizados para el diagnóstico según este índice son los publicados en el Anexo III de la IPH, en los tipos de masas de agua en los que no se dispone de Información sobre las condiciones de referencia se utilizaron los límites de la tipología 112, de forma provisional, de acuerdo a las indicaciones del Informe CEMAS 2009 (CHE, 2010). Ver **Tablas 35 y 36.**.

TABLA 35

Rangos de Estado Ecológico del índice IBMWP de acuerdo al Anexo III de la Orden ARM/2656/2008.

Estado	Clase	109	111	112	115*	116*	117*	126	127
Muy Bueno	I	>124	>140	>133	>133	>133	>133	>127	>135
Bueno	II	95-124	107-140	101-133	101-133	101-133	101-133	95-127	103-135
Moderado	Ш	63-94	71-106	68-100	68-100	68-100	68-100	63-94	68-102
Deficiente	IV	32-62	36-70	33-67	33-67	33-67	33-67	33-62	35-67
Malo	V	<32	<36	<33	<33	<33	<33	<33	<35

^{*} En los tipos 115, 116 y 117 no se han establecido condiciones de referencia. A nivel de aproximación y de forma provisional, se utilizan para el diagnóstico del estado ecológico las mismas condiciones que las asignadas para el tipo 112.

TABLA 36

Rangos de Estado Ecológico del índice IBMWP, en forma de EQR, de acuerdo al Anexo III de la Orden

ARM/2656/2008.

TIPOS	Denominación	Condición de referencia	EQR Límite MB-B	EQR Límite B-Mo	EQR Límite Mo-D	EQR Límite D-M
109	Ríos mineralizados de baja montaña mediterránea	160	0,78	0,59	0,39	0,20
111	Ríos de montaña mediterránea silícea	180	0,78	0,59	0,39	0,20
112	Ríos de montaña mediterránea calcárea	150	0,89	0,67	0,45	0,22
115*	Ejes mediterráneo-continentales poco mineralizados	150	0,89	0,67	0,45	0,22
116*	Ejes mediterráneo-continentales mineralizados	150	0,89	0,67	0,45	0,22
117*	Grandes ejes en ambiente mediterráneo	150	0,89	0,67	0,45	0,22
126	Ríos de montaña húmeda calcárea	161	0,79	0,59	0,39	0,20
127	Ríos de Alta Montaña	158	0,86	0,65	0,43	0,22

^{*} En los tipos 115, 116 y 117 no se han establecido condiciones de referencia. A nivel de aproximación y de forma provisional, se utilizan para el diagnóstico del estado ecológico las mismas condiciones que las asignadas para el tipo 112.

El 40 % de las estaciones alcanzaron el *muy buen* estado ecológico, el 29 % alcanzaron el *buen* estado. En total el 69 % de las estaciones cumplieron con el objetivo de la DMA del *"buen*"

estado ecológico". Por el contrario un 31 % de estaciones no alcanzaron el *buen* estado, siendo el estado *moderado* con un 20 % el que fue más abundante. Ver **Figura 85**.

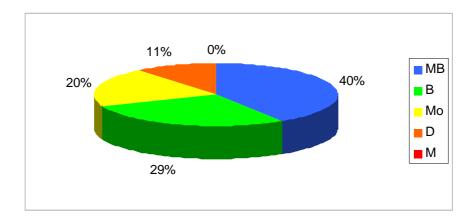
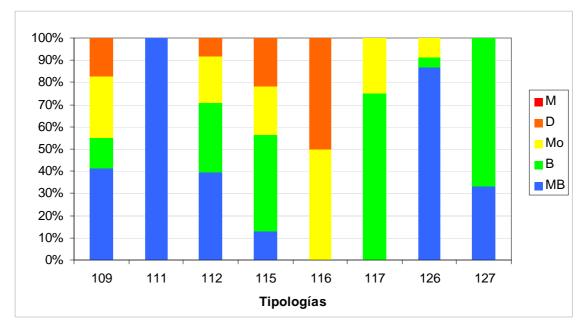



Figura 85. Clases de estado ecológico para las métricas de macroinvertebrados

Si se analizan los resultados que se obtuvieron para cada tipología, **Figura 86**, se observa que los tipos 109, 112, y 126 obtuvieron el mayor número de estaciones que alcanzaron el *muy buen* y el *buen* estado ecológico. Los peores resultados se obtuvieron en el tipo 116, en el que ninguna de las estaciones alcanzó el buen estado.

Figura 86. Distribución de las clases de estado ecológico para los diferentes tipos de ríos estudiados según el índice de macroinvertebrados IBMWP. M=*malo*; D=*deficiente*; Mo=*moderado*; B=*bueno*; MB=*muy bueno*

En la **Tabla 37**, se resumen los datos de estado ecológico obtenidos del índice IBMWP para cada una de las tipologías.

TABLA 37

Número de estaciones para cada clase de calidad en los diferentes tipos de ríos muestreados en 2010.

SD sin datos

TIPOS	Denominación	MB	В	Мо	D	M	SD
109	Ríos mineralizados de baja montaña mediterránea	12	4	8	5	0	16
111	Ríos de montaña mediterránea silícea	1	0	0	0	0	0
112	Ríos de montaña mediterránea calcárea	19	15	10	4	0	8
115	Ejes mediterráneo-continentales poco mineralizados	3	10	5	5	0	9
116	Ejes mediterráneo-continentales mineralizados	0	0	1	1	0	2
117	Grandes ejes en ambiente mediterráneo	0	6	2	0	0	6
126	Ríos de montaña húmeda calcárea	20	1	2	0	0	7
127	Ríos de Alta Montaña	2	4	0	0	0	2
	Total	57	40	28	15	0	50

En la **Figura 87** de la página siguiente, se representa la distribución espacial de las clases de estado ecológico que se obtuvieron de la aplicación del índice de macroinvertebrados IBMWP. Se puede observar que el estado muy bueno se encontraba distribuido ampliamente a lo largo de toda de la Cuenca. Destaca la presencia de un elevado número de estaciones en estado Moderado y Deficiente en la Cuenca del río Jalón. El resto de estaciones que se encontraban en los estados citados anteriormente, se hallaban en tramos medios y bajos de los ríos.

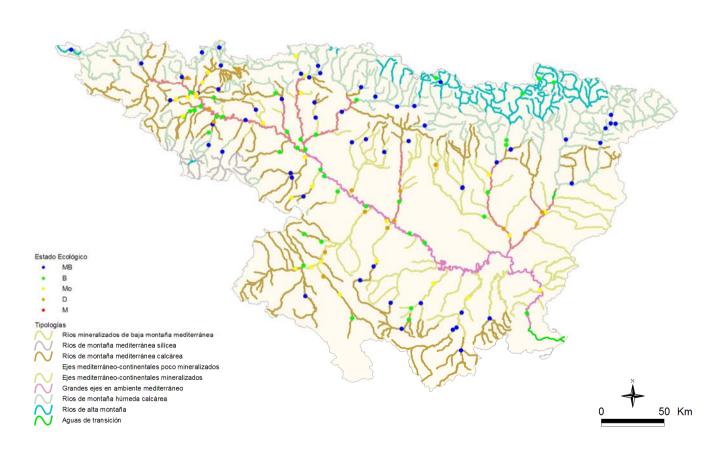


Figura 87. Distribución de las clases de estado ecológico para los diferentes tipos de ríos estudiados según el índice de macroinvertebrados IBMWP

4.6.1.2 Determinación del estado ecológico con macrófitos (IVAM)

Para la determinación o evaluación del estado ecológico mediante el uso de macrófitos (vegetación acuática macroscópica) se utilizó el índice *IVAM*, propuesto y testado por Moreno et al. (2005; 2006) en ríos de la comunidad de Castilla-La Mancha. Para el establecimiento de los límites de clases de calidad se optó por utilizar los límites propuestos por Moreno (Tabla 5 en Moreno et al. 2006, Pág. 830) para el conjunto de ríos de Castilla-La Mancha. De esta forma, los límites del IVAM quedaron como se expone en la **Tabla 38**.

TABLA 38
LIMITES DE CLASES DE CALIDAD PARA EL IVAM

Estado	Clase	Valor índice IVAM
Muy Bueno	I	> 5,7
Bueno	II	5,7-4,5
Moderado	III	4,4-3,2
Deficiente	IV	3,1-2,0
Malo	V	< 2

El indicador IVAM se aplicó a un total de 113 estaciones de muestreo. Los resultados (nº de géneros, valor del IVAM y estado biológico resultante), se muestran en el **Cuadro 4**.

El análisis global de los resultados de la evaluación del estado ecológico mediante el índice IVAM ofrece los siguientes resultados, ilustrados en la **Figura 88**. Un 39% de las muestras mostraron un estado por debajo de *bueno*. Las clases mayoritarias fueron *bueno*, con un 43% de las muestras, y *moderado*, con un 33%, les siguió la clase *muy bueno* con un 18%, las clases *deficiente* y *malo*, con el 5% y el 1% de las muestras, respectivamente, fueron minoritarias.

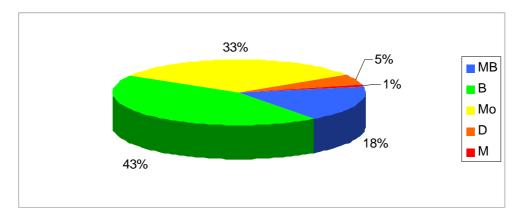
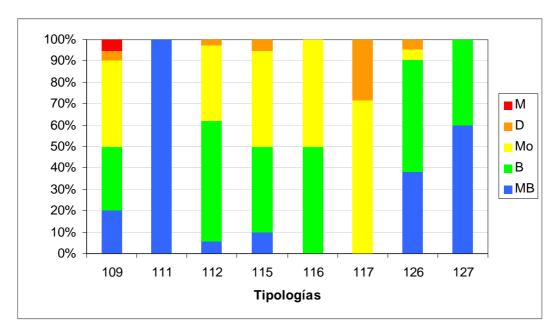



Figura 88. Distribución de las clases de calidad para el indicador de macrófitos IVAM

En cuanto a la distribución de las clases de calidad por tipologías de ríos (**Figura 89**), el IVAM arrojó los siguientes resultados:

- En los tipos 111, 112, 126 y 127 (ríos de montaña) las clases bueno y muy bueno, fueron las clases mayoritarias.
- Las clases bueno y moderado predominaron en los tipos 115 y 116.
- La clase moderado predominó en los tipos 109 y 117 y estuvo ausente en el tipo 111.
- Las clases deficiente y malo fueron minoritarias.

Figura 89. Distribución de las clases de calidad para los diferentes tipos de ríos estudiados según el indicador biológico de macrófitos (índice IVAM)

En la **Tabla 39** se presentan el número de estaciones para cada clase de calidad de las diferentes tipologías.

TABLA 39

Número de estaciones para cada clase de calidad en los diferentes tipos de ríos muestreados en 2010. SD sin datos

TIPOS	Denominación	MB	В	Мо	D	M	SD
109	Ríos mineralizados de baja montaña mediterránea	4	6	8	1	1	25
111	Ríos de montaña mediterránea silícea	1	0	0	0	0	0
112	Ríos de montaña mediterránea calcárea	2	21	13	1	0	19
115	Ejes mediterráneo-continentales poco mineralizados	2	8	9	1	0	12
116	Ejes mediterráneo-continentales mineralizados	0	1	1	0	0	2
117	Grandes ejes en ambiente mediterráneo	0	0	5	2	0	7
126	Ríos de montaña húmeda calcárea	8	11	1	1	0	9
127	Ríos de Alta Montaña	3	2	0	0	0	3
	Total	20	49	37	6	1	77

Si se representan los datos en un mapa, **Figura 90**, se puede observar que los estados ecológicos *muy bueno y bueno* fueron mayoritarios en los tramos de cabecera de zonas montañosas. Los estados inferiores a *bueno* se obtuvieron en los tramos medios y bajos de los ríos. Estos tramos presentaron la particularidad de que sus aguas presentaron cierta turbidez y que discurrían por zonas de cultivos intensivos o extensivos de regadío y de secano. En estas zonas las aguas de drenaje de los regadíos se encuentran conectadas a las redes de barrancos y acequias y, estas van a desembocar finalmente a los ríos, lo que podría ocasionar un aumento de la turbidez y de la concentración de nutrientes.

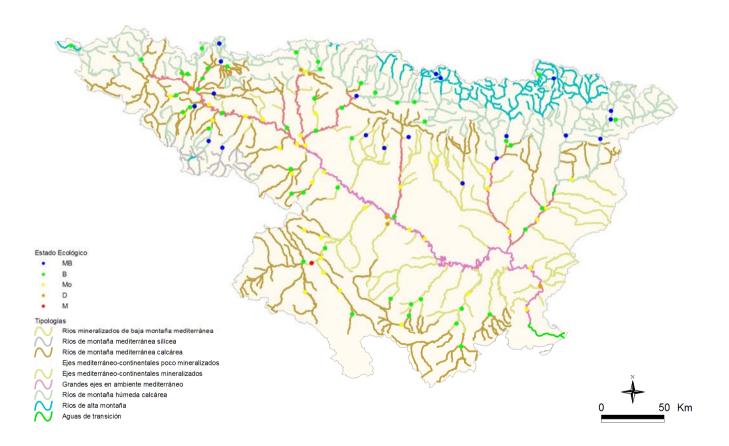


Figura 90. Distribución de las clases de calidad según el indicador biológico de macrófitos (índice IVAM)

4.6.1.3 Determinación del estado ecológico con fitobentos (IPS)

Para la determinación o evaluación del estado ecológico mediante el uso de las algas bentónicas o fitobentos (organismos autótrofos asociados a los fondos de los ecosistemas acuáticos, más concretamente, microalgas bentónicas), se utilizó el índice de diatomeas *IPS* (índice de poluosensibilidad específica, CEMAGREF 1982).

Los límites utilizados para el diagnóstico según este índice son los publicados en el Anexo III de la IPH, en los tipos de masas de agua en los que no se dispone de Información sobre las condiciones de referencia se utilizaron los límites de la tipología 112, de forma provisional, de acuerdo las indicaciones del Informe CEMAS 2009 (CHE, 2010). **Ver Tabla 40 y 41.**

TABLA 40

Rangos de Estado Ecológico del índice IPS de acuerdo al Anexo III de la Orden ARM/2656/2008.

Estado	Clase	109	111	112	115*	116*	117*	126	127
Muy Bueno	I	>16,8	>16,2	>16	>15,1	>15,1	>15,1	>16,3	>17,4
Bueno	II	16,8-12,6	16,2-12,2	16-11,9	16-11,9	16-11,9	16-11,9	16,3-12,2	17,3-13,1
Moderado	Ш	12,5-8,4	12,1-8,1	11,8-8	11,8-8	11,8-8	11,8-8	12,1-8,1	13,0-8,8
Deficiente	IV	8,3-4,2	8-4,1	7,9-3,9	7,9-3,9	7,9-3,9	7,9-3,9	8,0-4,1	8,7-4,3
Malo	V	<4,2	<4,1	<3,9	<3,9	<3,9	<3,9	<4,1	<4,3

^{*}En los tipos 115, 116 y 117 no se han establecido condiciones de referencia. A nivel de aproximación y de forma provisional, se utilizan para el diagnóstico del estado ecológico las mismas condiciones que las asignadas para el tipo 112.

TABLA 41

Rangos de Estado Ecológico del índice IPS, en forma de EQR, de acuerdo al Anexo III de la Orden ARM/2656/2008.

TIPOS	Denominación	Condición de referencia	EQR Límite MB-B	EQR Límite B-Mo	EQR Límite Mo-D	EQR Límite D-M
109	Ríos mineralizados de baja montaña mediterránea	17,5	0,96	0,72	0,48	0,24
111	Ríos de montaña mediterránea silícea	16,5	0,98	0,74	0,49	0,25
112	Ríos de montaña mediterránea calcárea	17	0,94	0,70	0,47	0,23
115*	Ejes mediterráneo-continentales poco mineralizados	17	0,94	0,70	0,47	0,23
116*	Ejes mediterráneo-continentales mineralizados	17	0,94	0,70	0,47	0,23
117*	Grandes ejes en ambiente mediterráneo	17	0,94	0,70	0,47	0,23
126	Ríos de montaña húmeda calcárea	17,7	0,92	0,69	0,46	0,23
127	Ríos de Alta Montaña	18,7	0,93	0,70	0,47	0,23

^{*}En los tipos 115, 116 y 117 no se han establecido condiciones de referencia. A nivel de aproximación y de forma provisional, se utilizan para el diagnóstico del estado ecológico las mismas condiciones que las asignadas para el tipo 112.

El indicador IPS se aplicó a un total de 103 estaciones de muestreo. Los resultados se muestran en el **Cuadro 4**.

El análisis de los resultados de la evaluación del estado ecológico mediante el índice IPS ofreció los siguientes resultados, ilustrados en la **Figura 91**. Un 22% de las muestras mostraron un estado por debajo de *bueno*. Las clases mayoritarias fueron *muy bueno*, con un 44% de las muestras, y *bueno*, con un 34%. La clase *moderado*, con un 16% y la clase *deficiente*, con sólo el 6%, fueron minoritarias.

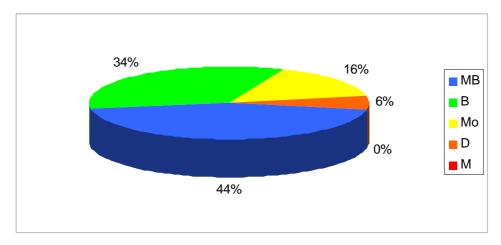
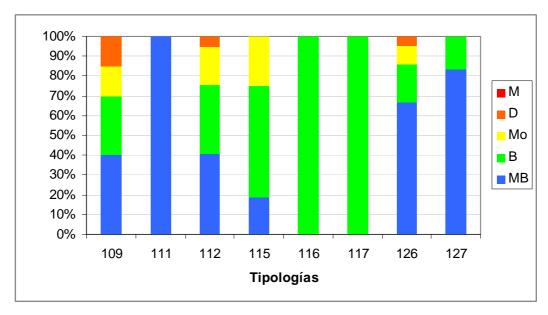



Figura 91. Distribución de las clases de calidad para el indicador de fitobentos IPS

En cuanto a la distribución de las clases de calidad por tipologías de ríos (**Figura 92**), el IPS arrojó los siguientes resultados:

- En todos los tipos las clases bueno y muy bueno, fueron mayoritarias.
- La clase moderado se dio en mayor porcentaje en el tipo 115.
- La clase deficiente predominó en el tipo 109.
- La clase malo no estuvo representada.

Figura 92. Distribución de las clases de calidad para los diferentes tipos de ríos estudiados según el indicador biológico de fitobentos (índice IPS)

En la **Tabla 42**, se resumen para cada tipología el número de estaciones para cada una de las clases de calidad.

TABLA 42

Número de estaciones para cada clase de calidad en los diferentes tipos de ríos muestreados en 2010. SD sin datos

TIPOS	Denominación	MB	В	Мо	D	М	SD
109	Ríos mineralizados de baja montaña mediterránea	8	6	3	3	0	25
111	Ríos de montaña mediterránea silícea	1	0	0	0	0	0
112	Ríos de montaña mediterránea calcárea	15	13	7	2	0	19
115	Ejes mediterráneo-continentales poco mineralizados	3	9	4	0	0	16
116	Ejes mediterráneo-continentales mineralizados	0	1	0	0	0	3
117	Grandes ejes en ambiente mediterráneo	0	1	0	0	0	13
126	Ríos de montaña húmeda calcárea	14	4	2	1	0	9
127	Ríos de Alta Montaña	5	1	0	0	0	2
	Total	46	35	16	6	0	87

Si se representan los datos de estado ecológico que se obtuvieron de la aplicación del índice de diatomeas IPS en un mapa, **Figura 93**, se puede observar que el estado *muy bueno* estuvo ampliamente distribuido, desde zonas de cabecera a tramos bajos. Los estados inferiores a *bueno* se encontraron en zonas puntuales afectadas por presiones conocidas.

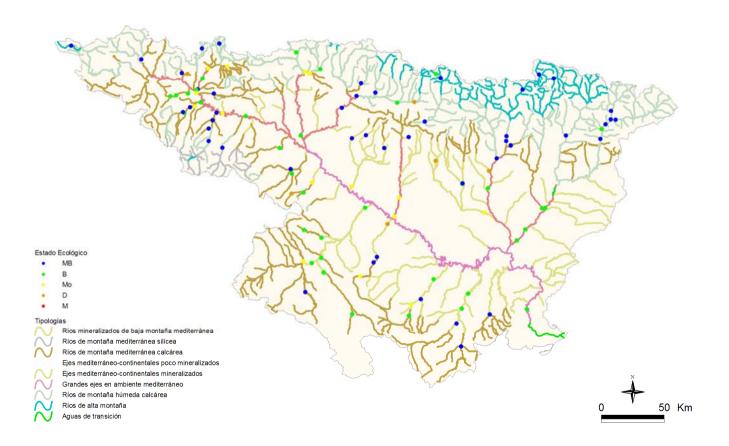


Figura 93. Distribución de las clases de calidad según el indicador biológico de fitobentos (índice IPS)

4.6.2 Estado Ecológico según los Indicadores Biológicos

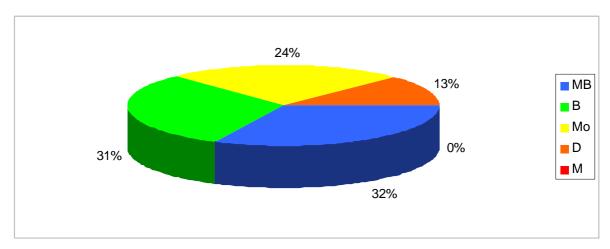
Por un lado y siguiendo la metodología más restrictiva, se ha escogido como indicador, de entre todos los indicadores biológicos, aquel cuyo resultado fuera la estima menos favorable en cada ocasión, tal y como en principio establecen las directrices de la DMA, según el principio "uno fuera, todo fuera". Hay que indicar que se han tenido en cuenta aquellas estaciones de las que, como mínimo, se disponía de valores de uno de los indicadores. A nivel de aplicación práctica, el procedimiento es el siguiente:

Condiciones biológicas

- 1. Clasificación de cada punto de muestreo en 5 categorías para los índices IPS e IBMWP, utilizando los límites del Anexo III de la IPH y de la tipología 112 para aquellas tipologías de las que no se disponen de condiciones de referencia, 115, 116 y 117, de acuerdo a lo establecido en el Informe CEMAS 2008 (CHE, 2009). También se ha tenido en cuenta en otro apartado el índice IVAM, debido a que de momento no se han establecido condiciones de referencia para los distintos tipos.
- Asignación a cada punto de muestreo de la peor categoría entre las diagnosticadas según los índices individuales.
- Asignación a cada masa de agua con resultados de la peor categoría obtenida entre los puntos de muestreo que representan su calidad.
- 4. Las 5 categorías empleadas para la clasificación han sido:
 - a. Muy bueno
 - b. Bueno
 - c. Moderado
 - d. Deficiente
 - e. Malo

A. Estado Ecológico según los indicadores IBMWP e IPS

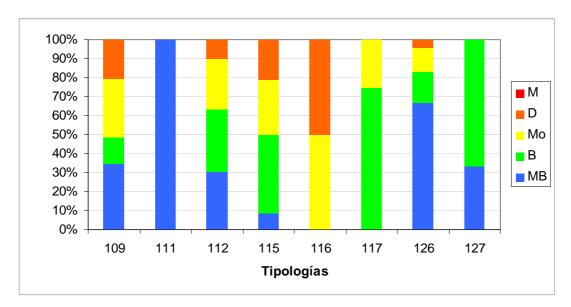
A continuación se expone el estado ecológico de las masas según los indicadores de macroinvertebrados (IBMWP) y diatomeas (IPS), sin considerar el de macrófitos (IVAM).


156

Cuadro 4.

En la **Figura 94** se pueden observar los resultados de estado ecológico que se obtuvieron según los indicadores biológicos IBMWP e IPS. En el cálculo también se tuvieron en cuenta aquellas estaciones de las que se disponía un solo dato, bien fuera de diatomeas o de macroinvertebrados.

Teniendo en cuenta lo comentado anteriormente, se observa que en el 32 % de las estaciones se obtuvo un estado ecológico correspondiente a *muy bueno* y en el 31 % presentó un *buen* estado. En total, en el 63% de las estaciones para las que se obtuvieron datos de los dos indicadores se cumplieron los objetivos establecidos en la DMA.


Figura 94. Estado ecológico de las estaciones muestreadas en 2010 según los indicadores biológicos IBMWP e IPS

Se compararon los resultados obtenidos mediante contrastes no paramétricos de Kruskal-Wallis para testar diferencias entre los distintos tipos de ríos. Se obtuvieron diferencias significativas (p< 0,05) entre los tipos de ríos. Si se analizan los datos para las diferentes tipologías, **Figura 95**, se observa que los tipos de montaña, 111 y 126, obtuvieron el mayor número de estaciones que alcanzaron el estado muy bueno.

Los peores resultados se obtuvieron en el tipo 116 (*Ejes mediterráneo-continentales mineralizados*).

En el tipo 112 (*Ríos de montaña mediterránea calcárea*), entorno al 50 % de las estaciones en las que se pudo calcular el estado ecológico alcanzaron el estado *bueno* y *muy bueno*. Este porcentaje aumentó hasta el 75 % en el tipo 117 (*Grandes ejes en ambiente mediterráneo*).

Figura 95. Estado ecológico de las estaciones muestreadas en 2010 según los indicadores biológicos IBMWP e IPS para cada tipología

En la siguiente tabla se presentan las estaciones para cada clase de calidad en cada una de las tipologías.

TABLA 43

Número de estaciones para cada clase de calidad en los diferentes tipos de ríos muestreados en 2010. SD sin datos

TIPOS	Denominación	MB	В	Мо	D	M	SD
109	Ríos mineralizados de baja montaña mediterránea	10	4	9	6	0	16
111	Ríos de montaña mediterránea silícea	1	0	0	0	0	0
112	Ríos de montaña mediterránea calcárea	15	16	13	5	0	7
115	Ejes mediterráneo-continentales poco mineralizados	2	10	7	5	0	8
116	Ejes mediterráneo-continentales mineralizados	0	0	1	1	0	2
117	Grandes ejes en ambiente mediterráneo	0	6	2	0	0	6
126	Ríos de montaña húmeda calcárea	16	4	3	1	0	6
127	Ríos de Alta Montaña	2	4	0	0	0	2
	Total	46	44	35	18	0	47

En la **Figura 96** se representan en un mapa los resultados obtenidos, se observa nuevamente que el estado *muy bueno* prevaleció en las zonas de cabecera y el *bueno* en algunas estaciones de montaña y tramos medios. Las estaciones que no cumplieron el objetivo establecido en la DMA se encontraron, principalmente, aguas abajo de aglomeraciones urbanas e industriales y tramos medios y bajos de los ríos.

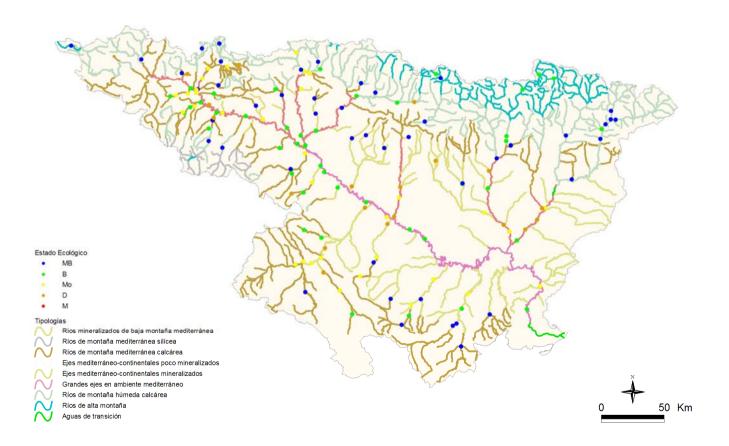
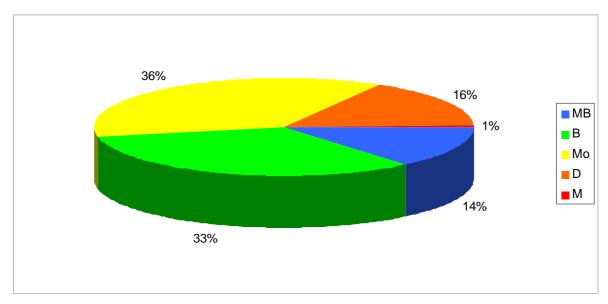


Figura 96. Distribución del estado ecológico de las estaciones muestreadas en 2010 según los indicadores biológicos IBMWP e IPS



B. Estado Ecológico según los indicadores IBMWP, IPS e IVAM

A continuación se expone el estado ecológico de las masas según los indicadores de macroinvertebrados (IBMWP), diatomeas (IPS) y macrófitos (IVAM). **Cuadro 4**.

En la **Figura 97** se resumen los datos de estado ecológico obtenidos al aplicar los tres indicadores biológicos, macroinvertebrados, diatomeas y macrófitos. Como en el apartado anterior también se ha calculado el estado ecológico en aquellas estaciones de las que se disponía datos de uno solo de los indicadores biológicos.

El *muy buen* estado ecológico se obtuvo en el 14 % de las estaciones, en un 33 % se alcanzó el *buen* estado y en un 53 % de las estaciones no se cumplieron los objetivos de la DMA.

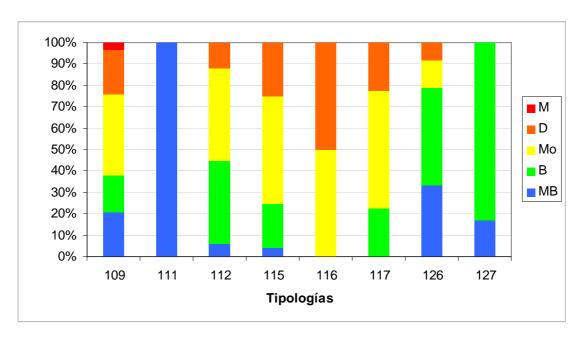


Figura 97. Estado ecológico de las estaciones muestreadas en 2010 según los indicadores IBMWP, IPS e IVAM

Se compararon los resultados obtenidos mediante contrastes no paramétricos de Kruskal-Wallis para testar diferencias entre los distintos tipos de ríos. Se obtuvieron diferencias significativas (p< 0,05) entre los tipos de ríos. Las tipologías que obtuvieron mayor número de estaciones en *muy buen* y *buen* estado ecológico correspondieron a las zonas de montaña (tipos 111, 126 y 127). Los peores resultados se obtuvieron en el tipo 116 (*Ejes mediterráneo-continentales mineralizados*).

El estado moderado fue el más abundante en los tipos 109, 112, 115 y 117 (Figura 98).

Figura 98. Estado ecológico de las estaciones muestreadas en 2010 según los indicadores IBMWP, IPS e IVAM para cada tipología

En la tabla inferior se resumen los datos obtenidos para cada clase de calidad en las diferentes tipologías presentes en la cuenca.

TABLA 44

Número de estaciones para cada clase de calidad en los diferentes tipos de ríos muestreados en 2010. SD sin datos

TIPOS	Denominación	MB	В	Мо	D	М	SD
109	Ríos mineralizados de baja montaña mediterránea	6	5	11	6	1	16
111	Ríos de montaña mediterránea silícea	1	0	0	0	0	0
112	Ríos de montaña mediterránea calcárea	3	19	21	6	0	7
115	Ejes mediterráneo-continentales poco mineralizados	1	5	12	6	0	8
116	Ejes mediterráneo-continentales mineralizados	0	0	1	1	0	2
117	Grandes ejes en ambiente mediterráneo	0	2	5	2	0	5
126	Ríos de montaña húmeda calcárea	8	11	3	2	0	6
127	Ríos de Alta Montaña	1	5	0	0	0	2
	Total	20	47	53	23	1	46

En el mapa de la siguiente página (**Figura 99**) se representan espacialmente los resultados que se obtuvieron. Se puede observar que el estado *muy bueno* fue mayoritario en las zonas de cabecera de montaña y el estado *moderado* en tramos medios y bajos de los ríos.

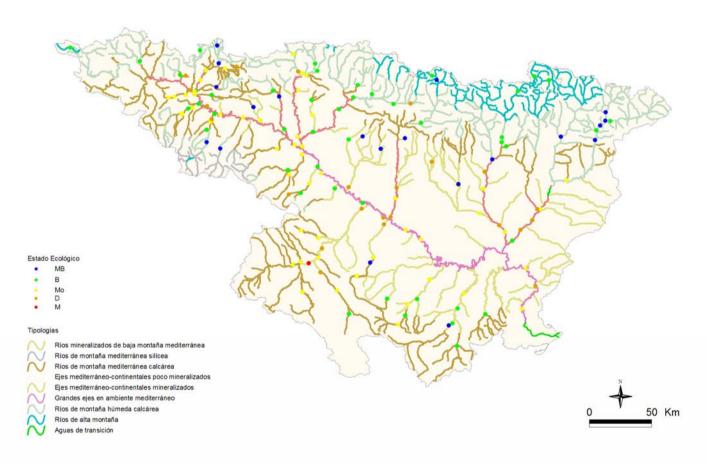


Figura 99. Distribución espacial del estado ecológico de las estaciones muestreadas en 2010 según los indicadores IBMWP, IPS e IVAM

4.6.3 Comparación del estado ecológico según los indicadores biológicos aplicados

A continuación se realiza una breve comparación de los resultados obtenidos al introducir el índice de macrófitos IVAM en la estima del estado ecológico de las estaciones objeto de estudio.

En las **Figuras 100** y **101**, se muestran los resultados de los cambios de clase de estado ecológico al tener en cuenta el IVAM junto al IPS e IBMWP. Se observó que un 67 % de las estaciones no varió su estado ecológico, un 15 % descendió de estado *Muy bueno* a *Bueno*, seguido de un 11 % de las estaciones que pasaron de *Bueno* a *Moderado*, un 4 % bajó dos clases de calidad de *Muy bueno* a *Moderado*, el resto de cambios de clases de estado ecológico fueron inferiores al 2 %. En total un 33 % de las estaciones variaron su estado ecológico.

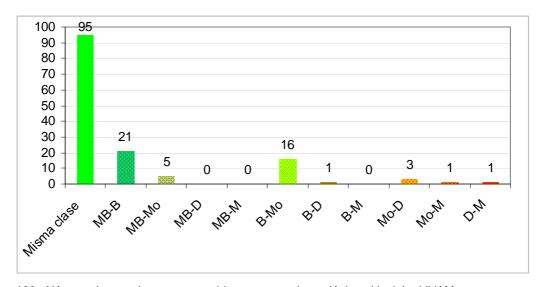
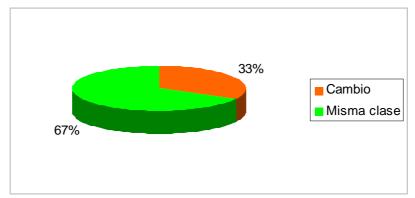
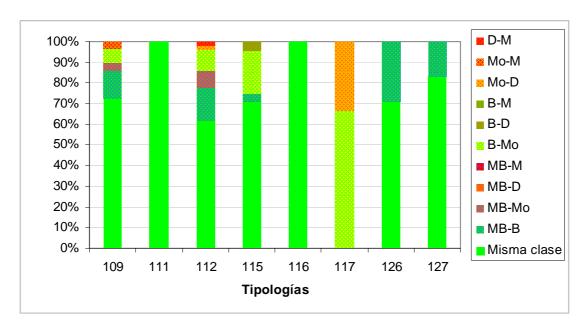



Figura 100. Número de estaciones que cambiaron su estado ecológico al incluir el IVAM

Figura 101. Variaciones de las clases de estado ecológico de las estaciones muestreadas en 2010 al incluir el IVAM en la estima del estado ecológico.

A nivel global, los resultados obtenidos de la estima del estado ecológico, sin IVAM y con IVAM, se compararon mediante el test de Wilcoxon, para comprobar si las diferencias detectadas eran significativas. Se obtuvo que existían diferencias entre los resultados obtenidos (p<0,05). Posteriormente se repitió el test para cada tipología, los resultados que se obtuvieron se muestran en la **Tabla 45**. En todas las tipologías en las que se pudo aplicar el test, se obtuvieron diferencias significativas (p<0,05) entre los resultados obtenidos al incluir el índice IVAM en el cálculo del estado ecológico.

TABLA 45


RESULTADOS DEL TEST DE WILCOXON
En negrita, las diferencias significativas, p<0,05

Tipo	Denominación	N	Z	р
109	Ríos mineralizados de baja montaña mediterránea	29	2,36	0,017
111	Ríos de montaña mediterránea silícea	1		
112	Ríos de montaña mediterránea calcárea	49	3,723	0,000
115	Ejes mediterráneo-continentales poco mineralizados	24	2,366	0,017
116	Ejes mediterráneo-continentales mineralizados	2		
117	Grandes ejes en ambiente mediterráneo	8	2,201	0,027
126	Ríos de montaña húmeda calcárea	24	2,520	0,011
127	Ríos de Alta Montaña	6		

En la **Figura 102** se muestran los resultados que se obtuvieron para cada tipología, como se puede observar en las tipologías 111 (*Ríos de montaña mediterránea silícea*), 116 (*Ejes mediterráneo-continentales mineralizados*) y 127 (*Ríos de alta montaña*) se obtuvieron los menores cambios de estado ecológico y, cuando en estos se dio, la variación fue de *Muy bueno* a *Bueno*. La mayor variación se dio en el tipo 117 (*Grandes ejes en ambiente mediterráneo*), sobretodo en los cambios de clase de *Muy bueno a Moderado* y de *Bueno a Moderado*. En el tipo 112 (*Ríos de montaña mediterránea calcárea*), la mayor variación fue de *Muy bueno a Bueno*.

En el resto de tipologías el cambio de clase que dominó fue el de Bueno a Moderado.

Figura 102. Variaciones de las clases de estado ecológico de las estaciones muestreadas en 2010 al incluir el IVAM en la estima del estado ecológico, por tipologías.

4.6.4 Indicadores de calidad hidromorfológicos

En los apartados siguientes se expone la metodología utilizada en el establecimiento de rangos de calidad para la evaluación del estado ecológico mediante estos dos indicadores.

Para establecer los límites de corte de las clases de estado ecológico se siguieron las indicaciones de la instrucción de planificación hidrológica para cada tipo de río, excepto en los tipos 115, 116 y 117 de los que no se dispone condiciones de referencia. En estos casos se siguieron las indicaciones del informe CEMAS de 2009 (CHE, 2010) y se les aplicaron los límites establecidos para el tipo 112. **Tablas 46 y 47**.

TABLA 46

Rangos de Estado Ecológico de los índices IHF y QBR de acuerdo al Anexo III de la Orden ARM/2656/2008

TIPOS	Denominación	IHF MB/B	QBR MB/B
109	Ríos mineralizados de baja montaña mediterránea	73,15	71,4
111	Ríos de montaña mediterránea silícea	66,24	77,875
112	Ríos de montaña mediterránea calcárea	59,94	69,7
115*	Ejes mediterráneo-continentales poco mineralizados	*	*
116*	Ejes mediterráneo-continentales mineralizados	*	*
117*	Grandes ejes en ambiente mediterráneo	*	*
126	Ríos de montaña húmeda calcárea	57,15	65,25
127	Ríos de Alta Montaña	68,4	88,36

^{*}En los tipos 115, 116 y 117 no se han establecido condiciones de referencia. A nivel de aproximación y de forma provisional, se utilizan para el diagnóstico del estado ecológico las mismas condiciones que las asignadas para el tipo 112.

TABLA 47

Rangos de Estado Ecológico de los índices IHF y QBR, en forma de EQR, de acuerdo al Anexo III de la Orden ARM/2656/2008

				QBR			
TIPOS	Denominación	Condición de referencia	EQR Límite MB-B	Condición de referencia	EQR Límite MB-B		
109	Ríos mineralizados de baja montaña mediterránea	77	0,95	85	0,84		
111	Ríos de montaña mediterránea silícea	72	0,92	87,5	0,89		
112	Ríos de montaña mediterránea calcárea	74	0,89	85	0,81		
115*	Ejes mediterráneo-continentales poco mineralizados	74	0,89	85	0,81		
116*	Ejes mediterráneo-continentales mineralizados	74	0,89	85	0,81		
117*	Grandes ejes en ambiente mediterráneo	74	0,89	85	0,81		
126	Ríos de montaña húmeda calcárea	63,5	0,90	72,5	0,90		
127	Ríos de Alta Montaña	72	0,95	94	0,94		

*En los tipos 115, 116 y 117 no se han establecido condiciones de referencia. A nivel de aproximación y de forma provisional, se utilizan para el diagnóstico del estado ecológico las mismas condiciones que las asignadas para el tipo 112.

CUADRO 5

ESTADO HIDROMORFOLÓGICO

MB=muy bueno; B=bueno;

EE-IHF: estado según el índice IHF. EE-QBR: estado según el índice QBR. EE-HMF: estado hidromorfológico final (MB: *muy bueno*; B: Inferior a *muy bueno*).

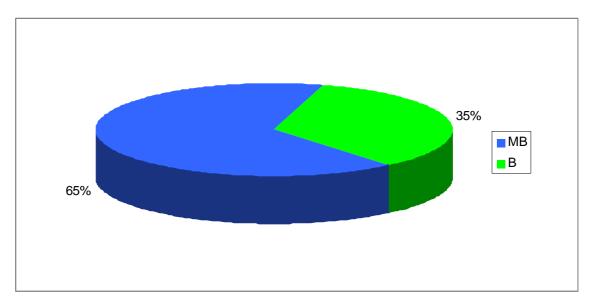
CEMAS	Toponimia	IdMasa	Tipología	IHF	EQR IHF	EE- IHF	QBR	EQR QBR	EE- QBR	EE- HMF
0001	Ebro / Miranda de Ebro	403	115	66	0.89	MB	55	0.65	В	В
0003	Ega / Andosilla	414	115	64	0.86	MB	60	0.71	В	В
0004	Arga / Funes	423	115	60	0.81	MB	80	0.94	MB	MB
0005	Aragón / Caparroso	421	115	64	0.86	MB	50	0.59	В	В
0009	Jalón / Huérmeda	443	116							
0010	Jiloca / Daroca	323	112	59	0.80	В	60	0.71	В	В
0013	Ésera / Graus	371	112	55	0.74	В	100	1.18	MB	В
0014	Martín / Hijar	135	109	68	0.88	В	60	0.71	В	В
0015	Guadalope / der. Acequia vieja de Alcañiz	143	109	78	1.01	МВ	100	1.18	MB	MB
0017	Cinca / Fraga	441	115	62	0.84	MB	75	0.88	MB	MB
0022	Valira / Anserall (Castellciutat)	617	126	68	1.07	MB	90	1.24	MB	MB
0023	Segre / Seo de Urgel	589	126	66	1.04	MB	55	0.76	В	В
0024	Segre / Lleida	432	115	64	0.86	MB	65	0.76	В	В
0025	Segre / Serós	433	115				60	0.71	В	В
0027	Ebro / Tortosa	463	117							
0032	Guatizalema / Peralta de Alcofea	160	109	61	0.79	В	60	0.71	В	В
0033	Alcanadre / Peralta de Alcofea	157	109	69	0.90	В	100	1.18	MB	В
0038	Najerilla / Torremontalbo	274	112	66	0.89	MB	95	1.12	MB	MB
0050	Tirón / Cuzcurrita	261	112	66	0.89	MB	40	0.47	В	В
0060	Arba de Luesia / Tauste	106	109	55	0.71	В	90	1.06	MB	В
0068	Arakil / Asiain	555	126	67	1.06	MB	95	1.31	MB	MB
									167	

CEMAS	Toponimia	IdMasa	Tipología	IHF	EQR IHF	EE-	QBR	EQR QBR	EE- QBR	EE- HMF
0071	Ega / Estella (aguas arriba)	1742	112	63	0.85	MB	55	0.65	В	В
0074	Zadorra / Arce - Miranda de Ebro	406	115	68	0.92	MB	75	0.88	MB	MB
0087	Jalón / Grisén	446	116	59	0.80	В	65	0.76	В	В
0089	Gállego / Zaragoza	426	115	68	0.92	MB	70	0.82	MB	MB
0090	Queiles / Azud alimentación Emb. del Val	300	112							
0092	Nela / Trespaderne	232	112							
0093	Oca / Oña	227	112							
0095	Vero / Barbastro	153	109	67	0.87	В	100	1.18	MB	В
0096	Segre / Balaguer	957	115							
0097	Noguera Ribagorzana / Deriv. canal de Piñana	820	112							
0101	Aragón / Yesa	417	115	67	0.91	MB	90	1.06	MB	MB
0106	Guadalope / Santolea - Derivación Ac. Mayor	951	109	67	0.87	В	100	1.18	MB	В
0118	Martín / Oliete	133	109	72	0.94	В	60	0.71	В	В
0120	Ebro / Mendavia (Der. Canal Lodosa)	413	115							
0126	Jalón / Ateca (aguas arriba)	107	109							
0146	Noguera Pallaresa / Pobla de Segur	645	126	61	0.96	МВ	100	1.38	MB	MB
0159	Arga / Huarte	541	126	64	1.01	MB	75	1.03	MB	MB
0162	Ebro / Pignatelli	449	117	64	0.86	MB	60	0.71	В	В
0163	Ebro / Ascó	460	117							
0176	Matarraña / Nonaspe	167	109							
0179	Zadorra / Vitoria -Trespuentes	249	112	73	0.99	MB	100	1.18	MB	MB
0180	Zadorra / Entre Mendivil y Durana	243	126	69	1.09	MB	95	1.31	MB	MB
0184	Manubles / Ateca	321	112	74	1.00	MB	55	0.65	В	В
0189	Oroncillo / Orón	239	112	63	0.85	MB	75	0.88	MB	MB
0203	Híjar / Espinilla	841	127	61	0.85	В	80	0.85	В	В
0205	Aragón / Cáseda	420	115	66	0.89	MB	90	1.06	MB	MB
0206	Segre / Plá de San Tirs	622	126	55	0.87	В	95	1.31	MB	В
0207	Segre / Vilanova de la Barca	428	115	64	0.86		75	0.88	MB	MB
0208	Ebro / Haro	408	115	_			_			
0211	Ebro / Presa Pina	454	117	66	0.89	MB	60	0.71	В	В
0214	Alhama / Alfaro	97	109	69	0.90	В	70	0.82	В	В
0217	Arga / Ororbia	548	126	71	1.12	MB	90	1.24	MB	MB
0218	Isuela / Pompenillo	163	109	59	0.77	В	90	1.06	MB	В
0219	Segre / Torres de Segre	433	115	66	0.89	MB	75	0.88	MB	MB
0225	Clamor Amarga / Aguas abajo de Zaidín	166	109	59	0.77	В	40	0.47	В	В
0226	Alcanadre / Ontiñena	165	109	66	0.86	В	95	1.12	MB	В
0227	Flumen / Sariñena	164	109							
0241	Najerilla / Anguiano	502	126	68	1.07	MB	100	1.38	MB	MB
0242	Cidacos / Autol	288	112	68	0.92	MB	65	0.76	В	В
0243	Alhama / Venta de Baños de Fitero	297	112	67	0.91	MB	55	0.65	В	В
0247	Gállego / Villanueva	426	115	60	0.81	MB	75	0.88	MB	MB
0504	Ebro / Rincón de Soto	416	115	60	0.81	MB	60	0.71	В	В
0505	Ebro / Alfaro	447	117	55	0.01	me		J., .		

CEMAS	Toponimia	IdMasa	Tipología	IHF	EQR IHF	EE- IHF	QBR	EQR QBR	EE- QBR	EE- HMF
0506	Ebro / Tudela	448	117	60	0.81	MB	50	0.59	В	В
0508	Ebro / Gallur (abto., aguas arriba río Arba)	450	117							
0511	Ebro / Benifallet	462	117							
0512	Ebro / Xerta	463	117	61	0.82	MB	50	0.59	В	В
0528	Jubera / Murillo de Río Leza	277	112							
0530	Aragón / Milagro	424	115	53	0.72	В	40	0.47	В	В
0537	Arba de Biel / Luna	103	109	64	0.83	В	90	1.06	MB	В
0540	Fontobal / Ayerbe	116	109	68	0.88	В	90	1.06	MB	В
0541	Huecha / Bulbuente	302	112							
0561	Gállego / Jabarrella	575	126	65	1.02	MB	100	1.38	MB	MB
0562	Cinca / Aguas abajo Monzón (Conchel)	437	115	53	0.72	В	90	1.06	MB	В
0564	Zadorra / Salvatierra	241	112	71	0.96	MB	90	1.06	MB	MB
0565	Huerva / Fuente de la Junquera	115	109	67	0.87	В	70	0.82	В	В
0569	Arakil / Alsasua	551	126	٠.	0.0.		. •	0.02		
0571	Ebro / Logroño - Varea	411	115	66	0.89	MB	60	0.71	В	В
0572	Ega / Arinzano	285	112	61	0.82	MB	95	1.12	MB	MB
0574	Najerilla / Nájera, Aguas abajo	270	112	60	0.81	MB	90	1.06	MB	MB
0577	Arga / Puentelarreina	422	115	00	0.0.				1112	1710
0582	Canaleta / Bot	178	109			В				В
0586	Jalón / Sabiñán	444	116	67	0.91	MB	70	0.82	MB	MB
0592	Ebro / Pina de Ebro	455	117	64	0.86	MB	75	0.88	MB	MB
0593	Jalón / Terrer	108	109	69	0.90	В	50	0.59	В	В
0595	Ebro / San Vicente de la Sonsierra	409	115	78	1.05	MB	90	1.06	MB	MB
0618	Gállego / Embalse del Gállego	848	127	56	0.78	В	65	0.69	В	В
0621	Segre / Derivación Canal Urgell	959	126	00	00		00	0.00		
0622	Gállego / Derivación Acequia Urdana	426	115							
0627	Noguera Ribagorzana / Derivación Acequia Corbins	431	115	66	0.89	МВ	60	0.71	В	В
0644	Bayas / Aldaroa	485	126	59	0.93	MB	100	1.38	MB	MB
0657	Ebro / Zaragoza - Almozara	452	117	65	0.88	MB	35	0.41	В	В
0701	Omecillo / Espejo	1702	112	62	0.84	MB	75	0.88	MB	MB
0702	Escá / Sigüés	526	126	64	1.01	MB	100	1.38	MB	MB
0703	Arba de Luesia / Malpica de Arba	100	109	71	0.92	В	95	1.12	MB	В
0705	Garona / Es Bordes	786	127	61	0.85	В	85	0.9	В	В
1028	Zadorra / La Puebla de Arganzón	405	115	73	0.99	MB	75	0.88	MB	MB
1032	Ayuda / Carretera Miranda	254	112	60	0.81	MB	75	0.88	MB	MB
1034	Inglares / Peñacerrada	255	112	71	0.96		95	1.12	MB	MB
1036	Linares / Espronceda	278	112		0.00					
1037	Linares / Torres del Río	91	109	63	0.82	В	90	1.06	MB	В
1038	Linares / Mendavia	91	109	63	0.82	В	0	0	В	В
1047	Aragón / Puentelarreina de Jaca	519	126	57	0.90	В	100	1.38	MB	В
1070	Salazar / Aspurz	540	126	79	1.24		95	1.31	MB	MB
1119	Corp / Vilanova de la Barca	151	109	. •						
1123	Cinca / El Grado	678	126							
1135	Ésera / Perarrua	679	126	51	0.80	В	90	1.24	MB	В
1139	Isábena / Capella E.A. 47	372	112	67	0.91		95	1.12	MB	MB
									169	

CEMAS	Toponimia	IdMasa	Tipología	IHF	EQR IHF	EE-	QBR	EQR QBR	EE- QBR	EE- HMF
1145	Ciurana / Gratallops	171	109							
1156	Ebro / Puente de El Ciego	410	115	66	0.89	MB	100	1.18	MB	MB
1157	Ebro / Mendavia	412	115							
1164	Ebro / Alagón	451	117	62	0.84	MB	55	0.65	В	В
1167	Ebro / Mora de Ebro	461	117	59	0.80	В	60	0.71	В	В
1177	Tirón / Haro	267	112	66	0.89	MB	70	0.82	MB	MB
1184	Iregua / Puente De Almarza	203	111	68	0.94	MB	100	1.14	MB	MB
1203	Jiloca / Morata de Jiloca	323	112	66	0.89	MB	50	0.59	В	В
1219	Huerva / Cerveruela	821	112	83	1.12	MB	65	0.76	В	В
1227	Aguas Vivas / Azaila	129	109			В				В
1235	Guadalope / Mas de las Matas	137	109	73	0.95	В	95	1.12	MB	В
1238	Guadalope / Alcañiz (aguas abajo)	145	109	68	0.88	В	100	1.18	MB	В
1251	Queiles / Los Fayos	300	112	73	0.99	MB	100	1.18	MB	MB
1252	Queiles / Novallas	301	112	51	0.69	В	75	0.88	MB	В
1260	Jalón / Bubierca	314	112	60	0.81	MB	95	1.12	MB	MB
1263	Piedra / Cimballa	315	112	78	1.05	MB	60	0.71	В	В
1269	Añamaza / Casetas de Barnueva	298	112	66	0.89	MB	70	0.82	MB	MB
1277	Arba de Riguel / Sádaba	105	109							
1297	Ebro / Flix (aguas abajo de la presa)	459	117	66	0.89	MB	50	0.59	В	В
1298	Garona / Arties	782	127				65	0.69	В	В
1299	Garona / Bossost	788	127							
1304	Sio / Balaguer E.A. 182	148	109							
1306	Ebro / Ircio	407	115	62	0.84	MB	55	0.65	В	В
1307	Zidacos / Barasoain	292	112	61	0.82	MB	90	1.06	MB	MB
1308	Zidacos / Olite	94	109	62	0.81	В	90	1.06	MB	В
1311	Arga / Landaben -Pamplona	546	126	67	1.06	MB	90	1.24	MB	MB
1314	Salado / Mendigorria	96	109							
1315	Ulzama / Olave	544	126	70	1.10	MB	95	1.31	MB	MB
1317	Larraun / Urritza	554	126	59	0.93	MB	60	0.83	В	В
1332	Oroncillo / Pancorbo	239	112	64	0.86	MB	5	0.06	В	В
1338	Oja / Casalarreina	264	112	64	0.86	MB	40	0.47	В	В
1350	, Huecha / Mallén	99	109	57	0.74	В	75	0.88	MB	В
1351	Val / Agreda	861	112	70	0.95	MB	5	0.06	В	В
1358	Jiloca / Calamocha	322	112	64	0.86	MB	15	0.18	В	В
1365	Martín / Montalbán	342	112	73	0.99	MB	40	0.47	В	В
1368	Escuriza / Ariño	134	109	69	0.90	В	40	0.47	В	В
1376	Guadalope / Palanca-Caspe	911	109		0.00			0		
1382	Huerva / Aguas abajo Villanueva de Huerva	822	109	71	0.92	В	50	0.59	В	В
1403	Aranda / Aranda del Moncayo	823	112	88	1.19	MB	100	1.18	MB	MB
1404	Aranda / Brea	110	109	63	0.82	В	25	0.29	В	В
1411	Peregiles / Puente Antigua N-II	324	112	55	0.74	В	40	0.29	В	В
1420	Valira / Aduana	613	126	63	0.74	MB	95	1.31	MB	MB
1420	Cárdenas / Cárdenas	269	112	62	0.84	MB	95 75	0.88	MB	MB
1440	Trueba / Villacomparada	478	126	64	1.01	MB	73 70	0.88	MB	MB
1453	Segre / Organyá	636	126	58	0.91	MB	85	1.17	MB	MB
1453	Matarraña / Aguas arriba de la	391	112	61	0.81		oo 75	0.88	MB	MB
	desembocadura del Tastavins						-			

170



CEMAS	Toponimia	IdMasa	Tipología	IHF	EQR IHF	EE-	QBR	EQR QBR	EE- QBR	EE- HMF
1476	Ésera / Desembocadura	434	115	63	0.85	MB	100	1.18	MB	MB
2017	Cámaras / Herrera de los Navarros	127	109							
2053	Robo / Obanos	95	109	57	0.74	В	80	0.94	MB	В
2060	Barranco de la Violada / Zuera (aguas arriba)	120	109	48	0.62	В	10	0.12	В	В
2068	Regallo / Valmuel	136	109							
2069	Alchozasa / Alcorisa	141	109							
2087	Oroncillo / Santa María de Ribarredonda	238	112	73	0.99	МВ	75	0.88	МВ	MB
2090	Saraso / Condado de Treviño	251	112	55	0.74	В	100	1.18	MB	В
2095	Relachigo / Herramélluri	260	112	65	0.88	MB	75	0.88	MB	MB
2101	Yalde / Somalo	273	112	63	0.85	MB	100	1.18	MB	MB
2104	Jalón / Alhama de Aragón	312	112	62	0.84	MB	20	0.24	В	В
2107	Martín / Obón	344	112	69	0.93	MB	80	0.94	MB	MB
2110	Celumbres / Forcall	354	112	68	0.92	MB	30	0.35	В	В
2113	Boix / La Pineda	362	112	64	0.86	MB	100	1.18	MB	MB
2124	Ebro / Miranda de Ebro (aguas abajo)	404	115							
2126	Cinca / Santalecina	438	115							
2129	Jalón / Ricla (ag. arriba)	445	116							
2132	Virga / Cabañas de Virtus	466	126							
2134	Hijedo / Bascones de Ebro	471	126							
2137	Urquiola / Otxandio	488	126	57	0.90	В	50	0.69	В	В
2140	Gas / Jaca	510	126	64	1.01	MB	75	1.03	MB	MB
2147	Juslapeña / Arazuri	547	126							
2156	Pallerols / Noves de Segres	629	126							
2179	Ésera / Camping Aneto	766	127	61	0.85	В	90	0.96	MB	В
2190	Tirón / Leiva	805	112	66	0.89	MB	75	0.88	MB	MB
2199	Escarra / Escarrilla	964	127	63	0.88	В	100	1.06	MB	В
2214	Huerva / Tosos	836	112	62	0.84	MB	80	0.94	MB	MB
2215	Alegría / Matauco	244	112	50	0.68	В	90	1.06	MB	В
2238	Arroyo Omecillo / Salinas de Añana	1703	112	58	0.78	В	75	0.88	MB	В
2243	Noguera de Tor / Barruera	741	127							
3000	Queiles / Aguas arriba de Tudela	98	109	66	0.86	MB				MB
3001	Elorz / Pamplona	294	112				90	1.06	MB	MB
3005	Llobregós / Ponts	147	109							
3006	Cervera / Cervera (aguas arriba)	149	109							
3011	Aguas Vivas / Aguas arriba azud de Blesa	333	112	66	0.89	МВ	100	1.18	MB	MB

4.6.4.1 Índice de hábitat fluvial (IHF)

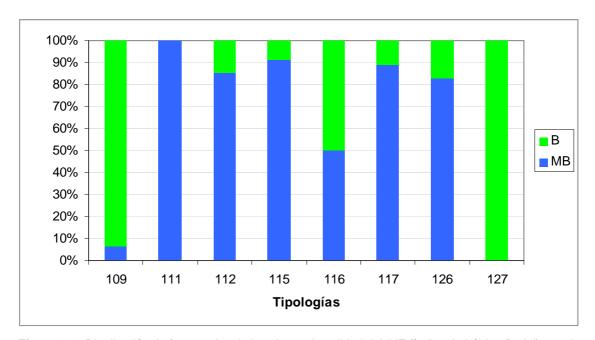

En general, en el 35 % de las estaciones se obtuvieron valores que no permitieron alcanzar el *muy bue*n estado, (**Figura 103**). En el 65 % de las estaciones se alcanzaron valores que permitieron obtener un *muy buen estado* hidromorfológico según este índice.

Figura 103. Distribución de frecuencias de las clases de calidad del IHF (índice de hábitat fluvial) para la campaña de 2010. MB=*muy bueno*; B: *bueno*

Si se analizan los datos para las distintas tipologías se observa que el mayor número de estaciones que alcanzaron el *muy buen* estado se encontraron en los tipos 111 y 115. En el resto de tipologías el estado que dominó fue el *muy bueno*, con la excepción de los tipos 109, 116 y 127. **Figura 104.**

Figura 104. Distribución de frecuencias de las clases de calidad del IHF (índice de hábitat fluvial) para la campaña de 2010

Llama la atención el bajo número de estaciones del tipo 127 (*ríos de alta montaña*) que alcanzaron el *muy buen* estado, se revisaron los datos y hubo una serie de estaciones que presentaron valores inferiores al establecido como límite *muy bueno/bueno*, pero que en realidad presentan unas características hidromorfológicas que por su naturaleza les impiden alcanzar dichos valores. Ya se comentó en el informe de 2008 (Informes Final Ríos, 2009).

En la **Figura 105** se representa espacialmente el estado ecológico a lo largo de toda la Cuenca del Ebro.

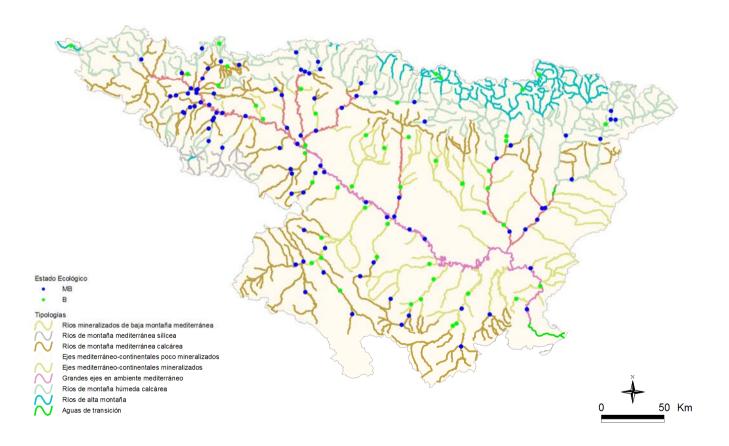


Figura 105. Distribución espacial de las clases de calidad del IHF (índice de hábitat fluvial) para la campaña de 2010

4.6.4.2 Índice de calidad del bosque de ribera

A partir de los datos del índice QBR obtenidos en cada punto de muestreo e interpretados sobre la base de las clases de calidad propuestas en la IPH (**Figura 106**), se pueden realizar los siguientes comentarios.

- Del total de muestras tomadas en el año 2010, un 61 % de las estaciones presentan un estado ecológico de la vegetación de ribera muy bueno.
- Aproximadamente un 39 % de las estaciones de muestreo presentan un estado inferior a muy bueno.

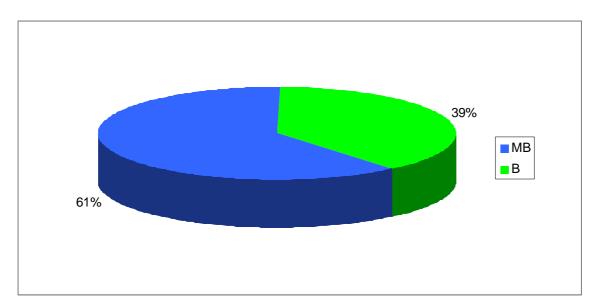


Figura 106. Distribución de frecuencias de las clases de calidad del QBR para la campaña de 2010

Entre las distintas tipologías se observó que los tipos 111, 112 y 126 presentaron el mayor número de estaciones con un estado *muy bueno*, esto podría estar relacionado con que son zonas de cabecera bien conservadas. Por otro lado, estarían los tipos 117 y 127, que obtuvieron mayor número de estaciones con valores que no alcanzaron el umbral de *muy bueno* (**Figuras 107 y 108**).

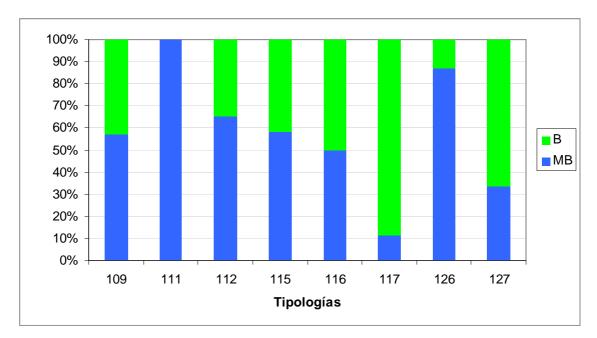
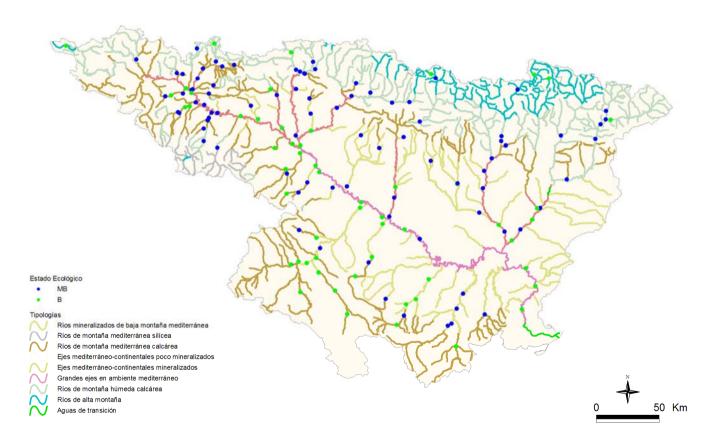
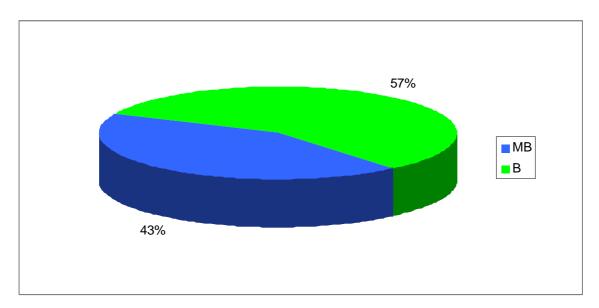


Figura 107. Clases de calidad según el QBR para cada tipología




Figura 108. Distribución espacial en la Cuenca del Ebro

4.6.4.3 Resumen de los indicadores hidromorfológicos

En el **Cuadro 5** se incluye la clasificación final de las condiciones hidromorfológicas obtenidas mediante los índices IHF y QBR en 2010. Hay que indicar que en las estaciones de alta montaña en las que no existió vegetación arbórea por causas naturales no se aplicó el índice QBR, en esas estaciones el estado hidromorfológico se calculó sólo con los valores de IHF, en las estaciones en las que la turbidez era elevada y no permitía observar el sustrato, se utilizó el QBR.

En la **Figura 109** se incluye la clasificación final de las condiciones hidromorfológicas (o índice HM) con valores de *muy buen* estado, "MB", o no alcanzando el *muy buen* estado, "B". Esta clasificación de estaciones resulta de la combinación de los índices IHF y QBR.

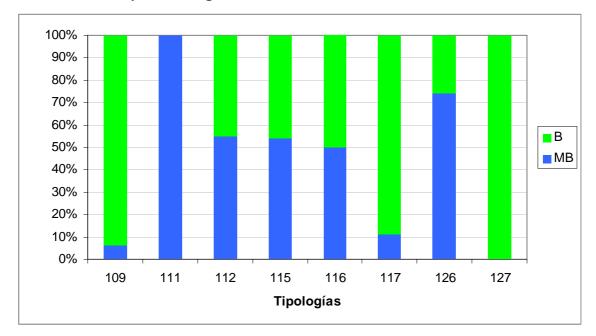


Figura 109. Estado hidromorfológico de las estaciones muestreadas en 2010.Clasificación obtenida de la combinación de los índices IHF y QBR

Como se observa, un 43 % de las estaciones presentaron unas condiciones hidromorfológicas propias del *muy buen* estado ecológico o condiciones de referencia, mientras que el 57% de las estaciones restantes no alcanzaron estas condiciones.

Las tipologías que obtuvieron mayor proporción de estaciones en estado *muy bueno* fueron la 111 y la 126. Las tipologías 109 y 117 presentaron mayor número de estaciones en estado inferior a *muy bueno*. **Figura 110.**

Figura 110. Estado hidromorfológico para las distintas tipologías.Clasificación obtenida de la combinación de los índices IHF y QBR

En la **Tabla 48**, se resumen los datos los indicadores para cada una de las tipologías.

TABLA 48

Número de estaciones para cada clase de calidad en los diferentes tipos de ríos muestreados en 2010.

		QBR		IHF		EE- HMF	
TIPOS	Denominación	MB	В	MB	В	MB	В
109	Ríos mineralizados de baja montaña mediterránea	16	12	2	29	2	29
111	Ríos de montaña mediterránea silícea	1	0	1	0	1	0
112	Ríos de montaña mediterránea calcárea	32	17	41	7	27	22
115	Ejes mediterráneo-continentales poco mineralizados	14	10	21	2	13	11
116	Ejes mediterráneo-continentales mineralizados	1	1	1	1	1	1
117	Grandes ejes en ambiente mediterráneo	1	8	8	1	1	8
126	Ríos de montaña húmeda calcárea	20	3	19	4	17	6
127	Ríos de Alta Montaña	2	4	0	5	0	6
	Total	87	55	93	49	62	83

En el mapa de la siguiente página, **Figura 111**, se representa la distribución espacial del estado ecológico según los indicadores hidromorfológicos. En ella destacan los ríos de la Cuenca del Jalón, ya que la mayor parte obtiene el estado Bueno.

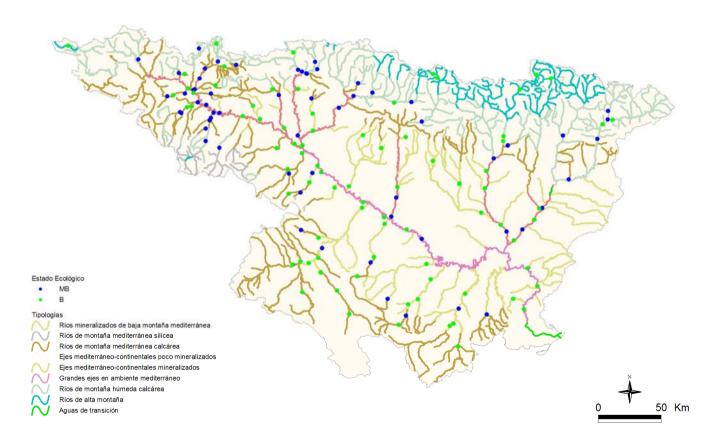


Figura 111. Distribución espacial de los resultados de estado hidromorfológico

4.6.4.4 Comparación entre Indicadores

Si analizamos las diferencias de clasificación de estado ecológico entre indicadores, en la **Figura 112** se puede observar que en un 71 % de los casos los dos indicadores clasificaron la estación en el mismo estado, del 71 %, un 35 % correspondió a *Muy bueno* y un 36 % a *Bueno*. En el 29 % restante hubo diferencias entre los indicadores, en un 24 % de las estaciones el causante del *buen* estado fue el QBR, mientras que en un 15 % lo fue el IHF.

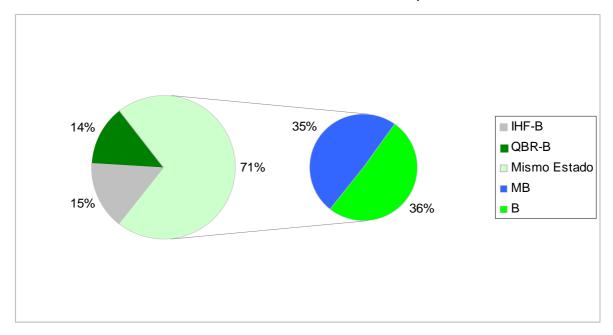


Figura 112. Indicadores limitantes de alcanzar el muy buen estado

En la **Figura 113** se muestran los resultados por tipologías. Se observó que en todos los tipos el indicador, que en mayor porcentaje, fue responsable del paso del *Muy buen* al *Buen* estado fue el QBR, excepto en los tipos 109 y en el 127 que fue el IHF.

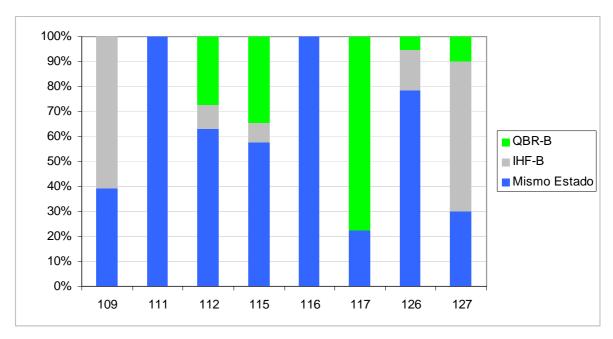


Figura 113. Factores limitantes para las distintas tipologias

En la **Tabla 49** se muestran los resultados que se obtuvieron de la comparación de los dos índices para cada tipología. A nivel global no se observaron diferencias significativas. Se observaron diferencias significativas entre los índices en los tipos 109, 115 y 117.

TABLA 49Test de Wilcoxon, en negrita las diferencias significativas p< 0,05

Tipo	Denominación	N	Z	Р
109	Ríos mineralizados de baja montaña mediterránea	28	3,40	0,000
111	Ríos de montaña mediterránea silícea	1		
112	Ríos de montaña mediterránea calcárea	48	1,959	0,05
115	Ejes mediterráneo-continentales poco mineralizados	23	2,073	0,038
116	Ejes mediterráneo-continentales mineralizados	2		
117	Grandes ejes en ambiente mediterráneo	9	2,366	0,017
126	Ríos de montaña húmeda calcárea	23	0,404	0,685
127	Ríos de Alta Montaña	5		

4.7 Estaciones de la Red CEMAS que no cumplen la DMA. Posibles causas y recomendaciones de control

A continuación se detallan, para cada una de las 77 estaciones, las causas que impidieron alcanzar el buen estado ecológico, así como posibles recomendaciones de control. Se indican en verde las estaciones que incumplen por el indicador basado en los macrófitos.

-CEMAS 0001 – Ebro en Miranda de Ebro: La estación alcanza un estado *deficiente* debido a los indicadores biológicos basados en los macrófitos.

-CEMAS 0004 - Arga en Funes: El tramo obtuvo un estado *moderado*, debido a los macrófitos, puede que las características del sustrato y la turbidez impidan el establecimiento de una comunidad estable.

-CEMAS 0010 – Jiloca en Daroca: En el tramo había claras señales de descenso de caudal, a pesar de lo cual también existía una fuerte corriente que dificultó y condicionó bastante el muestreo. Los valores del índice (IBMWP= 100) catalogaron esta estación en un estado "Moderado", si bien está en el límite de considerarse estado "Bueno" (más de 101), siendo además un valor similar al del año 2009 (IBMWP=99). El valor del IASPT tampoco fue especialmente anómalo, ni se observaron circunstancias reseñables respecto a la composición taxonómica o la distribución de grupos tróficos. Debido a que las mencionadas dificultades encontradas para realizar el muestreo pudieron haber condicionado de manera relevante la representatividad de la muestra tomada, no se puede asegurar totalmente que este incumplimiento de los objetivos de calidad sea debido exclusivamente a un mal estado ecológico, si bien se sabe por otros análisis anteriores que el río Jiloca suele presentar elevadas concentraciones de nitratos. Por ello se considera necesario continuar el análisis de este tramo en el futuro, para poder así asegurar el Estado Ecológico que posee.

-CEMAS 0014 – Martín en Híjar: Turbidez de las aguas muy alta, lo cual no permitía ver el fondo del río e hizo tener que ir a ciegas en el muestreo. Tramo con una suciedad notable. A pesar de que el valor hallado para el índice este año (IBMWP= 64) fue más alto que los hallados en campañas anteriores, las aguas alcanzaron un estado "Moderado", estando además todavía cerca del límite para ser considerado "Deficiente" para su ecotipo (valores menores a 63). El valor del IASPT resultó más bien bajo (IASPT=4,000), lo que unido al aspecto del tramo y a la suciedad que se percibía en el río, podría indicar que este tramo soporta algunas alteraciones (como vertidos orgánicos) que incidirían en una mala calidad de

sus aguas y el consiguiente mal Estado Ecológico.

-CEMAS 0017 - Cinca en Fraga: Aguas arriba del tramo de muestreo han creado una zona acondicionada para descenso de piraguas en aguas bravas. Turbidez del río bastante alta, el lecho del tramos se encuentra muy cubierto de algas. Da la impresión que hay más caudal que hace unos días, tal vez por tormentas y/o desembalses. Ambas cosas habrían influido en la idoneidad del muestreo, y pueden por ello afectar parcialmente a la representatividad de la muestra. El valor del índice resultante (IBMWP= 92) fue similar al hallado en años anteriores, calificando las aguas del tramo en un estado "Moderado". El IVAM lo clasificó en estado "Moderado". Aunque las reseñadas circunstancias observadas pudieron influir en estos resultados, no parece desacertado pensar que existan en la parte baja del Cinca algunas alteraciones que estuvieran contribuyendo a tener estos resultados.

-CEMAS 0024 - Segre en Lleida: El muestreo estuvo limitado, ya que el sustrato de las zonas de rápidos era mayoritariamente roca madre. Por otra parte en las zonas más lentas existían bastantes macrófitos y sedimento sobre el lecho. Aguas arriba entra un efluente que parece ser el retorno de una acequia (no sería la salida de la EDAR que hay aguas arriba). El valor del índice obtenido en este tramo (IBMWP= 59) fue similar al hallado en 2008 pero menor al de 2009, calificando las aguas del tramo en un estado "Moderado" al igual que el IVAM. En cambio el valor del IASPT (3,933) fue ligeramente superior al de las pasadas campañas. Aunque la menor disponibilidad de sustrato limitó parcialmente el muestreo, da la impresión que este tramo del río Segre sufre en esta zona alteraciones por vertidos procedentes de los núcleos industriales y urbanos existentes en su entorno.

-CEMAS 0032 – Guatizalema en Sesa: El tramo se hallaba en la localidad de Sesa, obtuvo un estado "Moderado" por el IVAM, probablemente por la elevada abundancia de Cladophora causada por la limpieza del bosque de ribera. En años anteriores presentaba una elevada concentración de nitratos. El resto de indicadores no se vieron afectados. El río discurre por amplias zonas de cultivos de cereal de secano y de regadío cuyo excesivo abonado podría aumentar la concentración de nitratos de las aguas del río, unos kilómetros aguas abajo se halla la masa de agua subterránea Sasos del Alcanadre que se halla contaminada por nitratos. Se recomienda mantener su estudio.

-CEMAS 0060 – Arba de Luesia en Tauste: Turbidez de las aguas notable, tramo con cierta suciedad en el cauce. En la zona accesible del cauce el lecho se compuso sobre todo de gravillas y algunos cantos, un sustrato poco estable en el que el operador se hundía parcialmente al muestrear. Este sustrato no sería el más adecuado como hábitat para algunos

taxones de macroinvertebrados. El valor del índice (IBMWP= 41) otorgó a las aguas de este tramo un estado "Moderado", similar al de pasadas campañas, con valores del IASPT y número de taxones presentes también más bien bajos. Los valores de IPS lo clasificaron en estado "Moderado". Todo parece indicar que en este tramo el río soporta fuertes afecciones de vertidos orgánicos debidos posiblemente a las diferentes actividades humanas presentes. Mantener el estudio de la masa.

-CEMAS 0074 – Zadorra en Arce-Miranda de Ebro: Turbidez del agua media, en el momento de muestreo era perceptible que el río ha sufrido un fuerte descenso en el caudal circulante. Esto podría haber condicionado la representatividad de la muestra tomada, ya que la disponibilidad de hábitats sería muy diferente. Así, habría disminuido la corriente existente en diferentes áreas, zonas anteriormente profundas habrían sido accesibles en ese momento, mientras que algunas otras áreas antes cubiertas por el agua no estarían en el momento del muestreo cubiertas por la lámina de agua. El valor hallado en el índice (IBMWP= 86) fue mucho menor que los valores hallados en pasadas campañas, otorgando al tramo un estado "Moderado". Por us parte el IASPT tuvo un valor intermedio al hallado en pasadas campañas. Ello puede hacer pensar que tal vez en principio no existiría un grave deterioro de la calidad de las aguas en le tramo respecto a otros años, y que posiblemente el marcado descenso del caudal observado la fecha de muestreo pudo ser en gran parte responsable del descenso del IBMWP existente. Sin embargo, y aunque no se pueden descartar totalmente la existencia de factores que incidieran negativamente sobre la calidad de las aguas, si es necesario conocer las causas del fuerte descenso del caudal, que en sí ya sería una alteración.

-CEMAS 0087 – Jalón en Grisén: El caudal era bastante bajo la fecha de muestreo, de manera que la parte superior del tramo estaba mayoritariamente estancada y con bastante sedimento sobre el lecho. Por encima existe una zona del río por la que pasan tractores y motos sobre el cauce. El valor hallado en el índice (IBMWP= 86) fue mucho mayor que el registrado en la campaña de 2008 (60) aunque menor que el existente el 2009 (98), calificándose en un estado ecológico "Moderado". Hay que señalar sin embargo que el valor del IASPT (4,300) fue algo mayor al hallado en pasadas campañas. El IVAM lo clasificó en estado "Moderado". Es conocido de pasadas campañas que este río sufre en gran parte de su recorrido alteraciones importantes, tanto en lo referente a su régimen de caudales como por vertidos contaminantes. Tanto estas circunstancias como el aparente menor caudal circulante pudieran ser responsables del incumplimiento de los objetivos de la DMA en el tramo.

-CEMAS 0089 - Gállego en Zaragoza: El acceso estuvo algo más complicado que pasadas

campañas, pues la orilla izquierda se ha ido cerrando por crecimiento de vegetación y carrizo. Además el río ha incidido algo más sobre la orilla izquierda (por la que se accede), aumentando la profundidad y la corriente en ella. Esto podría llevar, si se mantuviera esa tendencia, a que finalmente el acceso no fuera practicable en el futuro. Señales claras de alteración, percibiéndose claramente en el tramo olor de papelera, habiendo también bastantes finos y sedimento sobre el lecho del río. El valor alcanzado por el índice biótico (IBMWP= 56) fue mayor al de la campaña 2008 y similar a la de 2009, obteniendo al calificación de estado ecológico "Deficiente". El IASPT (3,500) fue intermedio al hallado en pasadas campañas, pero su bajo valor corrobora la sensación existente de que este tramo del río Gállego sufre fuertes alteraciones, con toda probabilidad principalmente por contaminación orgánica. El IPS lo clasificó en estado "Moderado". Mantener su estudio.

-CEMAS 0095 - Vero en Barbastro: Turbidez del agua baja, existía una cantidad bastante apreciable de algas en el tramo. El río ha cambiado su fisonomía respecto a la pasada campaña, incidiendo la profundidad sobre la orilla izquierda y desapareciendo la isla que existía aguas arriba. Se observaron en el tramo señales que indicarían la existencia de posibles crecidas en pasadas semanas. El valor del índice hallado (IBMWP= 65) fue mayor que en la campaña de 2008 y ligeramente menor que el de la campaña 2009, correspondiendo a un estado "Moderado", si bien se encuentra cerca del límite para ser considerado en estado "Deficiente" (menor a 63). El bajo valor del IASPT (3,824), muy similar al de pasados años, apoyaría la hipótesis de que la parte baja del río Vero presenta un grave deterioro de su estado ecológico debido a una contaminación por vertidos o aportes orgánicos. Los datos de vegetación acuática, tanto diatomeas como macrófitos también lo clasificaron estado por debajo de "Bueno". El IPS fue "Deficiente" y el IVAM "Moderado".

-CEMAS 0118 – Martín en Oliete: Se alcanzó un estado "Moderado" debido al valor registrado en el IPS. Ningún otro parámetro fue anómalo, por lo que se debería mantener el estudio en el tramo para dilucidar que factores pueden ser responsables del incumplimiento de la DMA en el tramo. En 2009 se midió una elevada concentración de nitritos.

-CEMAS 0162 – Ebro en Ribaforada: Se obtuvo un estado "Moderado" por los valores del IVAM, no se conocen vertidos urbanos aguas arriba. Puede que se tratara de algo puntual, ya que el resto de indicadores cumplen con los objetivos de la DMA, probablemente por la inestabilidad del sustrato del cauce que no permite el establecimiento de una comunidad de macrófitos estable o por la leve turbidez.

-CEMAS 0179 – Zadorra en Trespuentes: Turbidez del agua baja, el lecho estaba cubierto

en ciertas zonas por sedimentos. Existía una apariencia de que el río podía estar recibiendo diferentes aportes orgánicos en su recorrido. El valor del índice resultante (IBMWP= 91) fue similar al hallado las dos pasadas campañas, alcanzado un estado ecológico "Moderado". También el IASPT tuvo un valor similar al de pasadas campañas (3,957). El IPS también los clasificó en estado "Moderado". Todo parece indicar que este tramo del río Zadorra sufre un grave deterioro en su calidad debido a los vertidos procedentes del área urbana e industrial de Vitoria-Gasteiz.

-CEMAS 0184 – Manubles en Ateca: Los valores obtenidos del IPS, le asignaron un estado "Moderado". El resto de indicadores obtuvieron un estado "Bueno". En principio, el tramo no presenta afecciones graves.

-CEMAS 0189 — Oroncillo en Orón: Tramo con turbidez alta. Los bloques existentes en el sustrato se hallaban muy incrustados en el lecho, lo que dificultaba el muestreo. Se detectaron señales de descenso en el caudal en el tramo. El río presentaba una apariencia de suciedad en el tramo, siendo también claro que se había actuado sobre la orilla izquierda, talando la vegetación existente y haciendo más patente su humanización dejando ver una zona donde existían escalones de bajada hasta el cauce. El valor hallado para el índice (IBMWP= 78) fue netamente inferior al hallado en pasadas campañas, calificando las aguas de este tramo en un estado "Moderado". Se considera necesario analizar más detenidamente las causas del descenso de calidad detectado en este punto, si bien se conoce que el río Oroncillo suele soportar en algunos de sus tramos niveles destacados de compuestos nitrogenados.

-CEMAS 0207 – Segre en Vilanova de la Barca: En la fecha de muestreo en el tramo se percibió un olor bastante fuerte, existiendo también una apreciable cantidad de sedimentos en el lecho. El muestreo además se vio limitado, pues la fuerte corriente impedía cruzar el cauce, por lo que sólo pudo accederse a una banda de la orilla derecha. Este hecho podría haber afectado a la representatividad de la muestra y a los resultados que de ella se extrajeran. El resultado del índice (IBMWP= 76) calificó las aguas de este tramo en un estado ecológico "Moderado", siendo un valor apreciablemente menor que el hallado en las dos últimas campañas. Aunque el valor del IASPT (4,000) fue ligeramente menor al de pasadas campañas, y podría denotar que el río Segre sufre en este tramo algunos aportes orgánicos que afectarían a la fauna de macroinvertebrados, no se puede descartar que las limitaciones de acceso a diferentes áreas del cauce puedan ser en gran parte responsables del menor estado ecológico hallado en la presente campaña. El IVAM también lo clasificó en estado "Moderado". Mantener su estudio.

-CEMAS 0211 – Ebro en Presa Pina: Se alcanzó un estado "Moderado" debido a los valores del IVAM. Se recomienda mantener el estudio en el tramo.

-CEMAS 0214 – Alhama en Alfaro: Turbidez muy alta, posiblemente por las tormentas que se produjeron en fechas anteriores a la del muestreo, especialmente fuertes en zonas más altas. El río Alhama en este tramo parece sufrir aportes de agua en mal estado. En Cintruénigo el río se encontraba prácticamente seco, existiendo aguas arriba del tramo de muestreo retornos de agua de canales de riego que posiblemente sean los que aporten la mayor parte del caudal circulante en él. Aguas abajo se comprueba que existe también una alcantarilla. El valor del índice en el tramo (IBMWP= 94) fue algo menor al hallado en 2009, pero mayor al de 2008, otorgandole un estado ecológico "Moderado". Sin embargo se debe señalar que este valor es el límite para considerar un punto dentro del estado "Moderado" y no en el estado "Bueno". Por su parte el IASPT (4,273) fue algo mayor al hallado en las pasadas campañas, aunque su valor se puede considerar todavía bajo e indicativo de cierto deterioro en la calidad de las aguas.

-CEMAS 0217 – Arga en Ororbia: En el tramo era perceptible el olor proveniente de aportes orgánicos realizados sobre el río. El lecho también presentaba bastante sedimento, y por otra parte había desaparecido parte del carrizo que existía en pasados años en la orilla derecha del tramo. El valor encontrado para el índice (IBMWP= 80) otorgaron al tramo un estado "Moderado", siendo un valor algo inferior al de las dos últimas campañas. Lo mismo ocurría con el valor del IASPT (3,810). Los valores de los índices IPS e IVAM también lo clasificaron en estado "Moderado". Todo apunta a que el río sufría en este tramo un deterioro de su calidad debido a los vertidos procedentes del área urbana e industrial de Pamplona.

-CEMAS 0218 – Isuela en Pompenillo: Turbidez del agua media baja. En el tramo eran perceptibles bastantes restos de basura, existiendo claros síntomas de que el cauce sufría una notable polución orgánica, posiblemente de la EDAR de Huesca localizada aguas arriba. El valor del índice biótico encontrado (IBMWP= 38) calificaba las aguas en este tramo en un estado "Deficiente", siendo un valor similar al observado en pasadas campañas. Algo similar ocurría con el valor del IASPT (3,455), indicativo de que en el tramo existía un grave descenso de la calidad. También los valores del IPS lo clasificaron en estado "Deficiente" y el IVAM en estado "Moderado". Todo hace pensar que el río sufre un grave deterioro debido a los vertidos procedentes del núcleo urbano e industrial de Huesca. El pequeño tamaño del río Pompenillo y el bajo caudal que tiene no sería en principio capaz de asumir ese volumen de residuos orgánicos.

-CEMAS 0219 - Segre en Torres de Segre: En el tramo de muestreo existía una apreciable

cantidad de macrófitos. El valor del índice hallado (IBMWP= 58) otorgó a este tramo un estado ecológico "Deficiente". Dicho valor fue similar al hallado en 2008, y sensiblemente menor al de 2009. Sin embargo el valor del IASPT (3,625) fue similar. El IPS y el IVAM lo clasificaron en estado "Bueno". Todo parece indicar que el río Segre sufre en este tramo un deterioro por vertidos orgánicos que afectan a la calidad de sus aguas.

-CEMAS 0225 – Clamor Amarga en Zaidín: Río con turbidez muy elevada que no permitía ver nada del sustrato del tramo ya a unos pocos cm de profundidad. Las orillas y riberas se encuentran canalizadas y con una densa vegetación que impide el acceso al cauce, salvo en la zona del puente de la carretera. En esta zona se encontraron la fecha de muestreo varios bloques de gran tamaño desprendidos de la escollera en el sustrato. El caudal circulante dicha fecha era bastante alto. Todo ello hacía que el muestreo por una parte tuviera un factor de riesgo, y que por otra se hubiera visto limitado a una banda de unos pocos metros en la orilla desde la que se accedía. Además, la disponibilidad de sustrato en esta zona fue bastante limitada, todo lo cual incidiría negativamente sobre la representatividad de la muestra. Por otra parte se percibieron señales claras de que el río debe sufrir una notable contaminación orgánica aguas arriba. El valor del índice resultante (IBMWP= 54) confirió a este tramo un estado ecológico "Deficiente". Tanto este valor como el del IASPT (3,600) fueron similares a los hallados en las dos últimas campañas en dichos índices. Aunque ya se ha comentado que el muestreo realizado estuvo muy limitado, parece claro que en este tramo el río sufre una grave alteración de su calidad por vertido de compuestos orgánicos.

-CEMAS 0226 – Alcanadre en Ontiñena: El punto alcanzó un estado "Moderado" debido a los valores del IPS. Es conocido el problema de este tramo con la concentración de nitratos de sus aguas. Posiblemente la masa se ve afectada por vertidos orgánicos y retornos de agua de regadío que afectarían a su integridad ecológica. Se recomienda mantener el estudio del tramo en el futuro.

-CEMAS 0242 – Cidacos en Autol: El punto alcanzó un estado "Moderado" por los valores del IVAM. El resto de indicadores obtuvieron un buen estado.

-CEMAS 0247 – Gállego en Villanueva: El punto alcanzó un estado "Moderado" por los valores de los índices IPS. Es posible que en el tramo existan afecciones que incidan sobre la integridad ecológica del tramo. Se recomienda mantener el estudio del tramo de cara a concretar mejor lo que ocurre en el tramo.

-CEMAS 0504 – Ebro en Rincón de Soto: El tramo obtuvo un estado "Moderado" por los valores del IVAM. Durante el muestreo la turbidez del tramo era elevada y se observaron

189

oscilaciones de caudal. El resto de indicadores cumplieron los objetivos establecidos en la DMA. Puede que el tramo se encuentre afectado por vertidos urbanos o por contaminación difusa de los campos de cultivo. Se recomienda mantener su estudio.

-CEMAS 0512 – Ebro en Xerta: El punto alcanzó un estado "Moderado" por los valores del IVAM. Las limitaciones del muestreo (además de la turbidez) pudieron afectar a los resultados del índice, por lo que se recomienda mantener el estudio en el futuro.

-CEMAS 0530 – Aragón en Milagro: El punto alcanzó un estado "Moderado" por los valores del IVAM. La turbidez y la inestabilidad del sustrato del cauce pudieron afectar a los resultados del índice, por lo que se recomienda mantener el estudio en el futuro.

-CEMAS 0562 – Cinca en Conchel: El tramo presentó un estado "Moderado" por los valores del IVAM. Puede que la inestabilidad de la estructura del cauce impida el establecimiento de la comunidad de macrófitos que le correspondería. Se propone mantener el punto.

-CEMAS 0564 – Zadorra en Heredia: Turbidez del agua media, en el tramo es muy perceptible el olor a desagüe, especialmente en la parte superior del mismo. El tramo estaba dominado por la facies léntica, y casi todo el lecho se encontraba cubierto de sedimento. Sólo hay un pequeño tramo lótico junto al puente de superficie bastante reducida. El valor del índice calculado (IBMWP= 46) otorgó un estado ecológico "Deficiente" a este tramo. Aunque en la campaña de 2008 se tuvo un valor más alto, el valor del IASPT (3,538) fue similar. Ello parece indicar que las aguas del río Zadorra en este punto se encuentran fuertemente contaminadas por los vertidos procedentes de Salvatierra, cuya EDAR se localiza a cierta distancia aguas arriba de la zona de muestreo. Posiblemente un menor caudal circulante en el año 2010 ha podido ser el responsable del valor menor del índice IBMWP en dicha campaña.

-CEMAS 0565 – Huerva en Fuente de la Junquera: El lecho del río en este tramo se encuentra bastante cubierto de algas. Se perciben señales en el tramo de que el caudal ha bajado en la fecha de muestreo respecto a días anteriores. El valor del índice encontrado (IBMWP=54) hacía que el tramo tuviera un estado ecológico "Deficiente". Si bien este valor fue netamente superior al hallado en 2008, también fue ligeramente inferior al encontrado en 2009, algo similar a lo que ocurre con los valores calculados para el IASPT (3,600). Tanto los valores de ambos índices como los indicios observados en el tramo llevan a pensar que el río Huerva sufre un deterioro muy fuerte de su calidad provocado por las vertidos urbanos e industriales de los núcleos situados a lo largo de su tramo bajo. Los valores de los índices IPS (fitobentos) e IVAM (macrófitos) también lo clasificaron en estado "Deficiente".

-CEMAS 0571 – Ebro en Logroño-Varea: El punto alcanzó un estado "Moderado" por los valores del IVAM. La ligera turbidez del agua y los vertidos del núcleo de Logroño afectarían al tramo. Se considera conveniente mantener el estudio de esta masa y comprobar su evolución futura.

-CEMAS 0574 – Najerilla aguas abajo de Nájera: Los valores del IVAM lo clasificaron en estado "Moderado". El resto de parámetros obtuvieron resultados de buena calidad. Puede que el tramo se encuentre afectado por vertidos de la localidad de Nájera, o que la inestabilidad del sustrato del cauce impida el establecimiento de una comunidad de macrófitos estable. Se recomienda mantener el estudio, ya que aguas arriba, en el parque fluvial de la localidad se observaron macrófitos.

-CEMAS 0586 – Jalón en Sabiñán: Turbidez del agua alta, se observaron en la fecha de muestreo señales que indicarían que habría habido un descenso del caudal circulante. El cauce del tramo ha cambiado respecto a unos meses antes, en los que también se realizaron otros estudios en este tramo, habiéndose realizado además algunas actuaciones sobre las riberas del río. Existía bastante sedimento sobre el lecho del río en el tramo de estudio. El valor del índice hallado (IBMWP= 52) catalogó el tramo dentro de una estado ecológico "Deficiente", siendo un valor similar al hallado en 2009. También fue similar el valor del IASPT (4,000). Como se ha comentado antes, el río Jalón es una masa de agua que sufre fuertes impactos tanto en su régimen de caudales como por vertidos, lo que puede explicar los malos resultados hallados.

-CEMAS 0592 – Ebro en Pina de Ebro: El punto alcanzó un estado "Moderado" por los valores del IVAM. Aunque la turbidez pudo afectar parcialmente a la hora de realizar el muestreo, no se puede descartar que el río presente aportes orgánicos que afectarían a su integridad ecológica, por lo que se recomienda mantener el estudio de esta masa para vigilar su evolución.

-CEMAS 0593 – Jalón en Terrer: Caudal bastante importante con corriente muy elevada y una profundidad alta, lo cual limitaba en gran medida las posibilidades de muestreo de manera que sólo se pudo hacer éste en ciertas zonas del tramo. El resultado obtenido en el índice bióticos (IBMWP= 89) fue similar al hallado en la campaña de 2008 y netamente superior al hallado en 2009, si bien sólo otorgaba un estado ecológico "Moderado" al tramo. Algo similar ocurría con el valor calculado para el índice IASPT (4,684). El valor del IVAM lo clasificó en estado "Malo". Aunque las limitaciones al muestreo que se han comentado antes pudieron influir en los resultados hallados para los índices, ya se ha comentado anteriormente que el río

Jalón sufre graves afecciones que también pueden ser parcialmente responsables de los resultados hallados.

-CEMAS 0595 – Ebro en San Vicente de la Sonsierra: El muestreo estuvo fuertemente condicionado por el estado del río, siendo dudosa su validez. En el tramo circulaba un caudal mucho más alto que pasadas campañas, con una corriente muy elevada que provocaba un riesgo de arrastre para el operador. Sólo se podía acceder a pequeñas zonas de la orilla y a una estrecha banda junto a estas áreas. El valor del índice encontrado tras analizar la muestra (IBMWP= 66) otorgaban a este tramo un estado ecológico "Deficiente", aunque dicho valor estaba cerca del límite para pasar a considerarse dentro del estado "Moderado" (igual o superior a 68). El valor del IBMWP encontrado en la presente campaña fue netamente inferior a los valores hallados en las dos pasadas campañas. Los macrófitos presentes en el tramo le confirieron un valor del IVAM que lo clasificó en estado "Moderado". Sin embargo, esto pudiera deberse a las comentadas malas condiciones existentes para realizar el muestreo, lo cual pudiera llevar a que hubiera de considerarse la muestra como no representativa ni adecuada para el estudio.

-CEMAS 0627 – Noguera Ribagorzana en Derivación acequia Corbins: El río se encontraba totalmente cubierto de macrófitos, existiendo además en la fecha de muestreo una fuerte corriente que lo condicionó mucho. Ello hace que la representatividad de la muestra pudiera haberse visto afectada. El tramo parece ser usado para descenso de piraguas en aguas bravas, existiendo también alteraciones en el lecho, con una zona de grandes bloques en línea. De acuerdo a los valores del índice (IBMWP=63) el tramo fue catalogado en un estado "Deficiente", aunque se localiza relativamente cerca del rango inferior del estado "Moderado" (68). En pasadas campañas el valor del índice fue ligeramente superior, aunque sólo alcanzaba un estado "Moderado". Aunque las condiciones de corriente durante el muestreo pudieron afectar a la representatividad de la muestra tomada, también el estado ecológico en el río puede estar condicionado por las condiciones hidromorfológicas existentes. El resto de indicadores lo clasificaron en estado "Bueno".

-CEMAS 0657 – Ebro en Zaragoza-Almozara: En el tramo existía una gran cantidad de sedimentos negros cubriendo el lecho. Aparentemente el río en este tramo parece tener una baja densidad de macros. Turbidez alta, la fecha de muestreo aparentaba discurrir un caudal más bajo que en pasados años. Los valores hallados para el índice (IBMWP=90) otorgaron a las aguas de esta estación un estado ecológico "Moderado", siendo un valor similar al hallado en la campaña de 2009. El valor del IASPT (3,913) parece indicar también que este tramo

presenta un deterioro de su calidad, con una desaparición de taxones intolerantes a la contaminación. Los macrófitos lo clasificaron en estado "Deficiente". Además de las posibles alteraciones que el río puede estar recibiendo aguas arriba del tramo, a estos resultados negativos puede estar también contribuyendo la presencia de los sedimentos sobre el lecho, lo cual limitaría la disponibilidad de hábitats adecuados para el desarrollo de los macroinvertebrados.

-CEMAS 1028 – Zadorra en La Puebla de Arganzón: El agua da la sensación de tener una temperatura relativamente templada o caliente. El tramo se localiza aguas debajo de una presa, en una zona de paso de vehículos agrícolas. Se muestrea evitando esta zona de paso. El valor del índice biótico (IBMWP= 82) otorgó a este tramo un estado ecológico "Moderado", siendo un valor sensiblemente menor que los hallados en la dos últimas campañas. El valor del IASPT (4,100) fue sin embargo similar al de pasados años. Este valor y la alta proporción de organismos filtradores puede llevar a pensar que el tramo estudiado puede estar soportando una carga de materia orgánica que afecte negativamente a su estado ecológico. Casi un mes antes de la fecha de muestreo tuvo lugar en este río una fuerte avenida (caudal multiplicado casi por 20) que habría afectado a la fauna del mismo, reduciendo su riqueza y densidad. Esto también podría concordar con los resultados obtenidos respecto a las pasadas campañas (descenso del IBMWP con mantenimiento del valor del IASPT, lo que indicaría un descenso de la riqueza taxónica). Aunque casi un mes de lapso entre la avenida y el muestreo debiera ser tiempo suficiente para recuperarse, puesto que el factor principal para la recolonización es la deriva de organismos, se puede pensar que dos factores pudieran estar influyendo en que el ritmo de recolonización en este tramo sea más lento que lo habitual. Por una parte, la presencia de la presa aguas arriba, y por otra el hecho de que el tramo por encima de esta estación (correspondiente a la parte del río por debajo de la ciudad de Vitoria-Gasteiz) está fuertemente alterado, por lo que presenta una menor riqueza y densidad de taxones que faciliten una colonización más rápida.

-CEMAS 1038 – Linares en Mendavia: Turbidez del agua alta. En las orillas de la escollera casi no hay vegetación. Respecto a anteriores años, la mayor parte del tramo se ha rellenado con cantos, siendo zonas con una corriente más bien alta. Por otra parte, en la zona baja del tramo, junto al puente donde en pasadas campañas estaban las áreas más adecuadas de muestreo, se ha acumulado una cantidad notable de limo y sedimento sobre el lecho, lo cual pudiera estar relacionado con las obras de la variante que se estaban realizando en tramos aguas arriba. Los valores hallados para el índice (IBMWP= 90) otorgaron a las aguas de esta estación un estado ecológico "Moderado", siendo un valor similar al hallado en los dos últimos

años. Además este valor se sitúa en el rango de cinco puntos del límite para ser considerado correspondiente a un estado ecológico "Bueno" para el ecotipo donde se localiza la estación. El valor del IASPT (4,091) parece indicar de todas maneras que este tramo presenta un deterioro de su calidad, con una desaparición de taxones intolerantes a la contaminación. Las condiciones de disponibilidad de hábitats, con la combinación de limos y sedimento en unas áreas y una corriente destacable en otras, posiblemente contribuirían también a este mal resultado, aunque tampoco es descartable que el río Linares en este tramo no sufra otras alteraciones que incidan negativamente en su estado ecológico. La comunidad de macrófitos pudo verse afectada por la elevada turbidez de las aguas, el valor del IVAM obtenido lo clasificó en estado "Moderado".

-CEMAS 1156 – Ebro en El Puente de Elciego: Los valores del IPS lo clasificaron en estado "Moderado". El resto de indicadores lo clasificaron en "Buen" estado.

-CEMAS 1167 – Ebro en Mora de Ebro: Tramo con apariencia de tabla, sin rápidos aparentes, pero con una corriente destacable en la parte del canal que se aleja unos metros de la orilla. El tramo está lleno de macrófitos y sedimentos en la zona más cercana a la orilla, siendo estos también perceptibles en todas las áreas donde la corriente es menos intensa. No hay mucha disponibilidad de zonas para un muestreo en condiciones sobre sustrato duro (gravillas y cantos). El valor del índice hallado (IBMWP= 73) fue el menor de las dos últimas campañas, alcanzando un estado ecológico "Moderado", mientras que el valor del IASPT (4,294) fue similar al de dichas campañas. Es posible que las limitaciones en la disponibilidad de hábitats adecuados al muestreo pudieran haber afectado a la muestra tomada, pero no se puede descartar que existieran otros factores que afectaran a la calidad de las aguas en el tramo. La elevada presencia de macrófitos, principalmente *Potamogeton pectinatus*, le confirió un valor de IVAM que lo clasificó en estado "Deficiente". Mantener el estudio.

-CEMAS 1203 – Jiloca en Morata de Jiloca: En la fecha de muestreo se percibieron en el tramo señales claras de la existencia de un descenso del caudal circulante, a pesar de lo cual existía una corriente bastante elevada que afectó a las posibilidades de muestreo. También en el lecho había una perceptible cantidad de sedimentos. El valor hallado para el índice biótico (IBMWP= 33) fue el menor de los hallados en las últimas campañas, alcanzando un estado ecológico "Deficiente", estando además en el límite para ser considerado en un estado "Malo". El valor del IASPT (4,125), a pesar de poder considerarse relativamente bajo, fue ligeramente mayor que el hallado en las dos anteriores campañas. Esto podría indicar que ese menor valor del IBMWP pudo estar causado por las variaciones de caudal, si bien también se sabe que

este tramo suele presentar problemas por elevados niveles de compuestos nitrogenados, los cuales también estarían provocando estos malos resultados. El valor del IVAM que se obtuvo lo clasificó en estado "Moderado". La ligera turbidez del agua y las oscilaciones de caudal pudieron afectar a los resultados. Mantener el estudio.

-CEMAS 1219 – Huerva en Cerveruela: El tramo obtuvo un estado "Moderado" por los valores del IPS. En años anteriores presentaban elevadas concentraciones de nitratos. Se recomienda seguir su estudio.

-CEMAS 1238 – Guadalope Aguas abajo de Alcañiz El punto se localiza varios kilómetros aguas abajo del punto tomado en los años 2004-2005. En el tramo había una notable cantidad de algas cubriendo los cantos del lecho, percibiéndose también cierta cantidad de sedimentos sobre el lecho. El valor encontrado para el índice (IBMWP=92) fue similar o ligeramente mayor al de las pasadas dos campañas, algo similar a lo observado para el índice IASPT (4,381). Estos resultados calificaron las aguas de este tramo en un estado "Moderado", si bien se sitúa cerca del límite para considerarse dentro del estado ecológico "Bueno". Los valores del IVAM lo clasificaron en estado "Moderado". Mantener el estudio.

-CEMAS 1252 – Queiles en Novallas: Turbidez del agua prácticamente nula. El tramo tiene sobre todo carácter lótico, no existiendo zonas lénticas ni siquiera en las orillas. Parece que el cauce en el tramo ha tenido un clareo de vegetación acuática, lo que ha hecho que su fisonomía sea diferente a la de pasados años. El valor encontrado en la presente campaña para el índice biótico (IBMWP= 87) fue intermedio al de las dos campañas anteriores, alcanzando una calificación de estado ecológico "Moderado". Algo similar ocurría con los valores calculados del IASPT (3,955). Tanto las diatomeas, IPS, como los macrófitos, IVAM, también lo clasificaron en estado "Moderado". Estos datos parecen indicar que el río Queiles podría estar sufriendo un deterioro de su calidad en este tramo, debido tanto a los vertidos de las localidades e industrias cercanas, incluyendo el núcleo de Tarazona, como a los efectos de las actividades agrícolas en la zona.

-CEMAS 1263 – Piedra en Cimballa: El punto alcanzó un estado "Moderado" por el valor hallado para el IVAM, en años anteriores presentaba elevadas concentraciones de nitrato. Se recomienda mantener el estudio de la masa para controlar su evolución y asegurar qué presiones pueden estar teniendo lugar en el tramo analizado.

-CEMAS 1269 – Añamaza en Casetas de Barnueva: La comunidad de macrófitos presentes en el tramo estudiado le hicieron obtener un valor de IVAM que lo clasificó en estado "Moderado". El resto de indicadores lo clasificaron, al menos, en "Buen" estado.

195

-CEMAS 1297 – Ebro en Flix (aguas abajo de la Presa): La ausencia de un sustrato adecuado para el muestreo de macroinvertebrados y diatomeas, hizo que se tomara una muestra de macrófitos en las zonas en las que se pudo acceder. Hay que tomar los datos con precaución, son sólo orientativos. Los macrófitos que se tomaron clasificaron el tramo en estado "Moderado". Mantener el estudio. En el tramo sólo había afloramientos de roca madre.

-CEMAS 1306 – Ebro en Ircio: El muestreo en este punto se vio muy limitado por el fuerte caudal y la corriente existentes la fecha de muestreo. Ello hizo que sólo fuera accesible para el muestreo una pequeña banda de la orilla izquierda del río con un hábitat de tabla, no pudiendo accederse a la zona de rápidos por el riesgo para el operador de ser arrastrado por las aguas. Estas circunstancias provocarían que la muestra tomada pudiera no ser considerada como representativa del tramo. El valor resultante para el índice (IBMWP= 77) fue intermedio al hallado en las dos anteriores campañas, obteniéndose una calificación de estado "Moderado". Por su parte el IASPT (4,278) fue algo más bajo que las dos pasadas campañas. El IPS lo clasificó en estado "Moderado". Aunque el estado ecológico del río Ebro en este tramo puede estar afectado por vertidos procedentes del núcleo urbano e industrial de Miranda de Ebro, e incluso también verse alterado por las confluencias de algunas masas de agua (Zadorra, Bayas e Inglares), las limitaciones a la hora de realizar el muestreo hacen que no se puedan realizar conclusiones rotundas sobre el tema, siendo necesario continuar el estudio de la masa en el futuro.

-CEMAS 1308 – Zidacos en Olite: El punto alcanzó un estado "Moderado" por el valor hallado para el IVAM. En años anteriores presentaba altas concentraciones de nitratos en sus aguas. Parece que el río en este tramo podría estar afectado por vertidos de las localidades cercanas o incluso por prácticas agrícolas, si bien estas alteraciones no parecen afectar muy gravemente a la comunidad acuática en su integridad ecológica. Se recomienda mantener el estudio de la masa para controlar su evolución.

-CEMAS 1311 – Arga en Landaben-Pamplona: El valor obtenido para el IPS lo clasificó en estado "Moderado". Puede que el tramo se vea afectado por Pamplona, Barañáin y la entrada del río Elorz unos metros aguas arriba del tramo muestreado. Se recomienda mantener el estudio.

-CEMAS 1317 – Larraun en Urritza: La fecha de muestreo se observaron en el tramo señales e indicios de un descenso de caudal circulante. El tramo tenía la mayor parte del lecho en zona de corriente cubierto por *Cladophora*. Sólo en las zonas más lentas y en pequeñas áreas de orilla sombreada no existía ese recubrimiento de algas, si bien aparecía en cambio un depósito

196

de sedimento sobre el lecho. El valor del índice encontrado (IBMWP= 93) fue intermedio al hallado en los dos años anteriores, calificando sus aguas en un estado ecológico "Moderado", si bien dicho valor se encuentra cerca del límite que permitiría encuadrarlo en un estado "Bueno". Por su parte el valor del IASPT (5,471) fue similar o algo superior a los de pasadas campañas. El resto de indicadores lo clasificaron en buen estado. Es posible que en este río existan algunas afecciones que estén incidiendo sobre la calidad de las aguas, por lo que se cree conveniente mantener el estudio de su estado para poder tener una idea más clara de su evolución.

-CEMAS 1332 – Oroncillo en Pancorbo: Turbidez del agua media-baja. Se trata de un tramo en una zona urbanizada, cuyas orillas y riberas se encuentran muy alteradas. El valor del índice (IBMWP= 88) calificó a las aguas de esta masa en un estado "Moderado", con un valor algo menor al registrado el pasado año, algo que también se observó para el valor calculado en el IASPT (4,000). El resto de indicadores obtuvieron un estado "Bueno". Parece probable que este río, con su relativamente bajo caudal, esté siendo afectado por las actividades agrícolas del entorno por el que discurre, además de otras posibles afecciones por vertidos puntuales. Es necesario mantener el estudio del tramo, intentando concretar más cuales podrían ser las afecciones principales existentes.

-CEMAS 1338 – Oja en Casalarreina: El punto alcanzó un estado "Moderado" por el valor hallado en el IPS. En años anteriores presentaba altas concentraciones de nitratos. El río en este tramo podría estar afectado por las actividades agrícolas de la zona o vertidos de las localidades cercanas, por lo que se recomienda mantener el estudio de la masa para controlar su evolución y profundizar en este conocimiento.

-CEMAS 1351 – Val en Ágreda: Existían la fecha de muestreo señales muy claras de que el río soporta en el tramo una fuerte contaminación orgánica por aguas fecales o alcantarillado. Se percibía un claro olor de vertidos de aguas fecales, en le lecho había bastante sedimento, y también en el río (y en la muestra) se encontraron gran cantidad de colillas. El río aparentaba estar mucho peor que la fecha del muestre de hace dos años. A pesar de ello el valor del índice (IBMWP= 78) fue similar al de los dos años anteriores, si bien el estado ecológico seguía siendo "Moderado". El valor del IASPT (3,714) fue similar al del año 2009, y algo inferior al encontrado en 2008. En la muestra hubo una dominancia de larvas de dípteros (Chironomidae y Psychodidae, familias con algunas especies que pueden ser muy resistentes a la contaminación orgánica). Los valores de IPS lo clasificaron en estado "Deficiente". Todo lo observado lleva a pensar que el río sufre un grave deterioro por la existencia de vertidos

orgánicos de aguas fecales, lo que unido al pequeño caudal que suele presentar el río haría que el efecto negativo fuera más grave.

-CEMAS 1365 – Martín en Montalbán: El punto alcanzó un estado "Moderado" por el valor hallado para el IVAM. En años anteriores se observaron concentraciones elevadas de amonio y nitritos. Se percibía cierto olor a vertido. Se piensa que es conveniente mantener el estudio de la masa para controlar su evolución.

-CEMAS 1382— Huerva aguas abajo de Villanueva de Huerva: El caudal en el río la fecha de muestreo fue bastante alto y había una fuerte corriente, lo que provocó que no hubiera zonas lénticas. Todo ello limitó en parte el muestreo. Turbidez media-alta. Se estaban llevando a cabo unas obras de construcción de una depuradora en la zona aledaña a la orilla izquierda. El valor obtenido al calcular el índice (IBMWP= 92) otorgaron a las aguas de esta estación un estado ecológico "Moderado", aunque este valor se localizaba cerca del límite inferior para ser considerada en un estado "Bueno". El valor hallado en esta campaña fue algo inferior al de las dos pasadas campañas, mientras que el valor del IASPT (4,182) fue similar. Posiblemente el menor valor encontrado en el IBMWP se pueda relacionar con las dificultades encontradas para muestrear por la fuerte corriente, si bien tampoco se puede descartar la posible existencia de alteraciones o vertidos en la masa que estuvieran mermando la calidad de las aguas y su estado ecológico. El IPS lo clasificó en estado "Muy bueno".

-CEMAS 1403 – Aranda en Aranda de Moncayo: El punto alcanzó un estado "Moderado" por el valor hallado para el IVAM. Puede que la falta de luminosidad en el tramo afectara a los resultados. Se cree conveniente mantener el estudio de la masa para controlar su evolución.

-CEMAS 1404 – Aranda en Brea de Aragón: El punto alcanzó un estado "Moderado" por el valor hallado para el IVAM. En años anteriores presentaba valores de nitrito y amonio que indicaron la posible existencia de alteraciones en el tramo, tal vez por actividades agrícolas o vertidos. Se cree conveniente mantener el estudio de la masa para controlar su evolución.

-CEMAS 1411 – Peregiles en el puente de la Antigua N-II: El cauce en el tramo se encontraba prácticamente cubierto de macrófitos, lo cual limitaba mucho las posibilidades de muestreo, ya que salvo en pequeñas áreas muy localizadas, no era posible manejar o incluso colocar la manga de muestreo. Los resultados hallados tras el análisis de la muestra (IBMWP=71; IASPT=3,944) fueron similares o ligeramente mayores que los hallados en las dos pasadas campañas, calificando las aguas en un estado ecológico "Moderado", si bien hay que señalar que el valor del IBMWP se localiza cerca del límite para que fueran consideradas en estado "Deficiente". Aunque las dificultades halladas para muestrear por la escasez de áreas

apropiadas pudieran influir en los malos resultados obtenidos, tampoco es descartable que la masa esté sufriendo otros impactos que incidan negativamente sobre el estado ecológico. LA elevada abundancia de *Apium*, que cubría todo el tramo y la presencia de *Cladophora* le confirieron un valor de IVAM que lo clasificó en estado "Moderado".

-CEMAS 2053 – Robo en Obanos: En la fecha de muestreo había una turbidez del agua alta, percibiéndose también señales claras de que el río había llevado más caudal en días anteriores, lo que pudiera afectar a la representatividad de la muestra tomada. El cauce parecía estar más abierto y con menos vegetación que pasados años. El valor hallado en el índice biótico (IBMWP= 86), pese a ser más alto que el encontrado en los dos anteriores años, calificó las aguas de esta masa en un estado ecológico "Moderado". Por su parte el IASPT tuvo un valor intermedio al de anteriores años (3,583). Sin descartar el posible efecto del aumento de caudal en la representatividad de la muestra, es posible que el río Robo tenga algunas afecciones (por usos de suelo o por núcleos de población) en este tramo, las cuales incidirían negativamente sobre su estado ecológico.

-CEMAS 2060 - Barranco la Violada en Zuera: Prácticamente casi todo el tramo accesible y muestreable se hallaba cubierto de macrófitos (*Potamogeton pectinatus*), lo que también hizo que el sustrato estuviera lleno de limo. Ambas cosas provocaron que las posibilidades de muestreo estuvieran bastante limitadas y existieran ciertas dificultades. Durante las operaciones de muestreo se percibió un claro olor a purines o vertido orgánico similar en el tramo. Aproximadamente 1 Km aquas arriba del punto de muestreo se había actuado sobre las orillas y el cauce, haciendo un clareo, lo que pudiera provocar un aumento de sedimentos sobre el lecho aguas abajo. El valor resultante en el índice tras el análisis de la muestra (IBMWP= 53) otorgaba a las agua de este tramo un estado ecológico "Deficiente", siendo un valor sensiblemente inferior al obtenido en las dos anteriores campañas. Sin embargo el IASPT se mantuvo en valores similares (4,077) aunque se debe señalar que se trata de un valor más bien bajo. La abundancia de P. pectinatus en el tramo, unido a la presencia de otro géneros de tramos degradados, contribuyó a que el IVAM clasificara el tramo en estado "Moderado". Estos resultados indicarían que en el tramo existía un deterioro evidente de la calidad y el estado ecológico de las aguas, a lo que también pudieron contribuir las mencionadas actuaciones realizadas aguas arriba.

-CEMAS 2087 – Oroncillo en Santa María de Ribarredonda: El punto alcanzó un estado "Moderado" por el valor hallado para el IVAM. Históricamente presenta valores elevados de la concentración de nitratos. Es posible que la masa pudiera estar afectada por las actividades

agrícolas, sin descartar la existencia de vertidos de los pueblos colindantes. Se cree conveniente mantener el estudio de la masa para controlar su evolución y analizar más profundamente lo que puede ocurrir en el tramo.

-CEMAS 2095 – Relachigo en Herramelluri: El punto alcanzó un estado "Moderado" por el valor hallado para el IVAM. En años anteriores se observaron valores elevados de nitratos. El tramo puede estar afectado por las actividades agrícolas, si bien la comunidad acuática no parece estar severamente afectada. Se cree conveniente mantener el estudio de la masa para controlar su evolución.

-CEMAS 2101 – Yalde en Somalo: La turbidez del agua en la fecha de muestreo era mediaalta. Se trata de un tramo muy limitado para realizar el muestreo debido a la cerrada
vegetación existente, que hace que sólo sea accesible un trecho de cauce relativamente corto.
Sobre esta parte del lecho hay además una notable presencia de sedimento. Los valores del
índice hallados (IBMWP= 63) calificaron sus aguas en un estado "Deficiente", aunque se
situaba en un valor cercano al límite para considerarse en un estado "Moderado". Este valor
del índice fue intermedio entre los valores del IBMWP hallados en las dos campañas
anteriores, lo cual también ocurría con el valor del IASPT hallado (3,706). Estos datos y la
dominancia de quironómidos y oligoquetos existente en la muestra parecen indicar que este río
sufre un fuerte impacto, posiblemente por un aporte de materia orgánica en sus aguas.

-CEMAS 2104 – Jalón en Alhama de Aragón: Se trata de un tramo de río canalizado que presenta escolleras en sus riberas. El muestreo en esta estación estuvo muy limitado, y hasta cierto punto entrañaba cierto peligro para los operadores, ya que el río poseía una turbidez muy alta que no permitía ver el fondo del río y existía una corriente bastante alta en el tramo. Las limitaciones de acceso y movilidad habidas en el tramo la fecha de muestreo podrían haber afectado a la representatividad de la muestra. Los valores hallados en los índices bióticos calculados (IBMWP= 81; IASPT= 4,765) fueron algo más altos que los valores encontrados en 2008, si bien el tramo sólo alcanzaba a tener un estado ecológico "Moderado". Aunque las circunstancias de muestreo no permiten asegurar la representatividad de la muestra tomada y no permiten concluir con seguridad sobre el estado ecológico de esta masa, es posible que el río en este tramo posea diferentes impactos por vertidos orgánicos (algo también apoyado por la dominancia de quironómidos y simúlidos en la muestra) o detracciones de agua, por lo que se cree conveniente mantener el estudio del mismo.

-CEMAS 2113 – Boix en La Pineda: El punto alcanzó un estado "Moderado" por el valor hallado para el IVAM. En años anteriores presentaba altas concentraciones de nitratos. Por

200

ello, se puede pensar que en el tramo pudieran existir vertidos o aportes orgánicos. Se cree necesario mantener el estudio de la masa para controlar su evolución y analizar lo que puede estar sucediendo en ella.

-CEMAS 2140 – Gas en Jaca: Los valores del IPS lo clasificaron en estado "Moderado". Aguas arriba vierte la EDAR de Jaca. Mantener el estudio de la masa para ver si afecta a la comunidad de organismos.

-CEMAS 2190 – Tirón en Leiva: Tramo de río bastante alterado, la fecha de muestreo existían señales patentes de que habían hacía relativamente poco tiempo había accedido a la zona maquinaria pesada y había modificado parcialmente el lecho, encontrándose árboles (con hojas verdes todavía) caídos dentro del cauce, sustratos movidos... Se veía una clara diferencia entre estas zonas del tramo y aquellas que no habían sido afectadas, estando el lecho en estas últimas áreas totalmente cubierto de algas. En la parte baja del tramo se localizaron 5 bombas para la extracción de agua del lecho (de las cuales había 4 en funcionamiento en el momento del muestreo), oyéndose aguas arriba del tramo algunas bombas más en funcionamiento, aunque no se llegaron a ver. Se muestreó por encima de la zona donde se localizaban las bombas, donde también se constató la presencia de un desagüe. El valor del índice biótico calculado tras el análisis de la muestra (IBMWP= 93) fue intermedio a los resultados encontrados las dos campañas anteriores, si bien el estado ecológico resultante fue únicamente "Moderado". Por su parte el valor del IASPT (4,650) fue el más alto de las últimas campañas. Con estos datos, se puede considerar que el tramo presenta un deterioro de su estado ecológico, si bien se cree necesario mantener el estudio que permita comprobar si éste pudiera ser puntual y debido a las modificaciones de hábitat realizadas, o bien puede haber más factores que pudieran incidir negativamente en el estado del río.

-CEMAS 2215 – Alegría en Matauco: Los valores de IPS lo clasificaron en estado "Moderado". La serie histórica indica la presencia de altas concentraciones de nitratos, probablemente procedentes de la agricultura. Mantener su estudio.

-CEMAS 2238 – Añana en Salinas de Añana: Río con muy alta salinidad, sobre el lecho existía una costra resbaladiza y brillante de sal. Existían en el tramo señales claras de alteraciones y vertidos, con un fuerte olor a desagüe, presencia de bastantes restos de basura, restos de madera, obras, escombro,... Los resultados obtenidos en los índices (IBMWP= 39; IASPT= 3,545) fueron prácticamente iguales a los de la campaña de 2009, alcanzado una calificación de estado ecológico "Deficiente". Los valores del IPS también lo

clasificaron en estado "Deficiente". Aunque estos resultados pudieran estar provocados por la elevada salinidad de las aguas de esta masa, las señales de alteraciones observadas llevan también a pensar que existen otras afecciones que este arroyo soportaría y pudieran ir en detrimento de su calidad biológica.

-CEMAS 3001 – Elorz en Pamplona: El muestreo realizado estuvo parcialmente limitado por la escasez de sustratos adecuados para el muestreo, pues gran parte del lecho en este tramo está compuesto de losa o roca madre no fisurada. Sólo se pudo muestrear en una pequeña zona de rápidos y en algunas zonas lénticas cerca de uno de los puentes del tramo. Mientras se estaba realizando el muestreo se empezó a percibir un fuerte olor a desagüe en el agua del río, el cual desapareció al cabo de un rato... Eso llevó a pensar sobre la posible existencia de algún aporte de aguas fecales o vertidos orgánicos no continuos aguas arriba, hipótesis apoyada también por otros indicios observados en el tramo en la fecha del muestreo. Aunque los valores de los índices hallados en esta estación (IBMWP= 89; IASPT= 4,045) fueron más altos que los encontrados en las dos pasadas campañas, dichos valores sólo alcanzaron una calificación de estado ecológico "Moderado". Aunque ya se ha comentado que el muestreo estuvo parcialmente limitado por la escasez de sustratos adecuados, se considera que el río Elorz debe sufrir diferentes afecciones en su cuenca que le hacen tener un deterioro de su estado ecológico. Los valores obtenidos para el IVAM y el IPS, lo clasificaron en estado "Deficente" y "Moderado" respectivamente. Mantener su estudio.

5. Red de Referencia

5.1 Introducción

En este apartado se incluye los resultados de las estaciones incluidas en la red de Referencia. Se estudiaron un total de 40 estaciones de las 42 que estaban planificadas. **Tabla 50.**

TABLA 50

Número de estaciones de referencia para cada tipología

TIPOS	Denominación	
109	Ríos mineralizados de baja montaña mediterránea	2
111	Ríos de montaña mediterránea silícea	5
112	Ríos de montaña mediterránea calcárea	13
115	Ejes mediterráneo-continentales poco mineralizados	2
116	Ejes mediterráneo-continentales mineralizados	1
117	Grandes ejes en ambiente mediterráneo	1
126	Ríos de montaña húmeda calcárea	14
127	Ríos de Alta Montaña	4

A continuación se explica brevemente el por qué de su estudio.

Los principales objetivos de la explotación de la red de referencia son:

- obtener información para mejorar el cálculo de las condiciones de referencia
- evaluar tendencias a largo plazo debidas a causas naturales.

5.2 Metodología

La metodología utilizada se explica detalladamente en el apartado 2 (Metodología).

5.3 Resultados biológicos. Macroinvertebrados, macrófitos y diatomeas

En este apartado se incluyen los resultados obtenidos en el análisis de las muestras de macroinvertebrados, vegetación macrofítica acuática y fitobentos (diatomeas) y la aplicación de los índices bióticos (IBMWP, IASPT, IVAM e IPS).

Los datos de los indicadores biológicos se incluyen en el **Anexo 1** junto con los datos físicoquímicos e hidromorfológicos.

A partir de estos datos, en los siguientes apartados se resumen y sintetizan los resultados obtenidos para los indicadores y métricas de macroinvertebrados, macrófitos y diatomeas.

Asimismo, se realizaron contrastes no paramétricos de Kruskal-Wallis para testar diferencias biológicas entre los distintos tipos de ríos. Los resultados de estos análisis se sintetizan en la **Tabla 51**.

TABLA 51

TESTS DE KRUSKAL-WALLIS H POR TIPOS DE RÍOS

PARA LOS INDICADORES BIOLÓGICOS.

Se incluyen los valores de probabilidad p, en rojo y negrita aquellas diferencias significativas

Variable	Н	N	p
IBMWP	10,82	40	0,094
NTAX IBMWP	9,90	40	0,128
NTAX MAI	9,93	40	0,120
IASPT	19,27	40	0,004
IVAM	9,41	39	0,093
IPS	7,14	36	0,210

5.3.1 Macroinvertebrados bentónicos

A) IBMWP (Iberian Biological Monitoring Working Party)

Se planificó el estudio de 42 estaciones de la red de Referencia, finalmente se muestrearon 40, las causas de las 2 estaciones que no se estudiaron se indicaron en el **Cuadro 2**. De los indicadores utilizados para estudiar el estado ecológico de las estaciones de la red referencia, fue el indicador biológico que tuvo una mayor aplicabilidad. Los valores hallados para el índice IBMWP oscilaron entre el valor 33 hallado en la estación CEMAS 3008 (Río Jalón en Campiel) y el valor 316 hallado en la CEMAS 1065 (Río Urrobi en Espinal-Puente Carretera a Garralda), con una media de 195. Dos terceras partes de de los puntos analizados en la campaña del año 2010 tuvieron valores del IBMWP dentro del rango comprendido entre 160 y 240. En la **Figura 114** se presenta la distribución de frecuencias de los datos obtenidos.

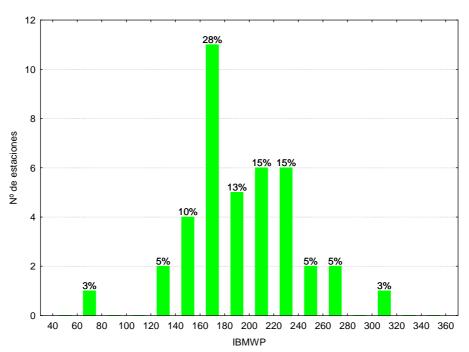


Figura 114. Distribución de frecuencias de los valores del IBMWP

Las diferencias entre tipos de ríos no fueron significativas (**Tabla 51**). Los tipos 111 y 126 (ríos de montaña) presentaron los valores más elevados (**Tabla 52**; **Figura 115**). El tipo 116 presentó los valores más bajos.

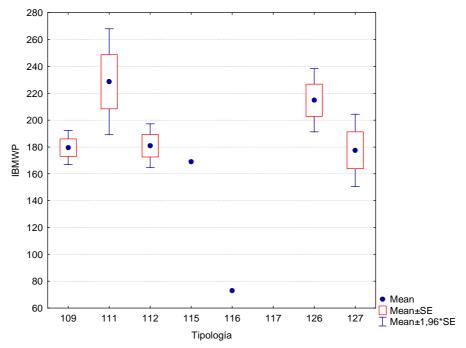


Figura 115. Valores medios del índice IBMWP por tipos de ríos

TABLA 52

Valor medio del IBMWP, desviación estándar (SD), valores máximo y mínimo, y número de casos (N) para los diferentes tipos de ríos muestreados en 2010

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	2	179.50	173	186	9.19
111	Ríos de montaña mediterránea silícea	5	228.60	158	280	45.04
112	Ríos de montaña mediterránea calcárea	13	180.92	123	231	30.06
115	Ejes mediterráneo-continentales poco mineralizados	1	169.00	169	169	
116	Ejes mediterráneo-continentales mineralizados	1	73.00	73	73	
117	Grandes ejes en ambiente mediterráneo	0				
126	Ríos de montaña húmeda calcárea	14	214.79	158	316	44.90
127	Ríos de Alta Montaña	4	177.50	147	213	27.40

En la **Figura 116** se representan gráficamente los valores de IBMWP de las estaciones de referencia de la Cuenca del Ebro. Destacan los valores elevados de las estaciones de los ríos del Pirineo Navarro y las situadas en los ríos silíceos del Sistema Ibérico Riojano.

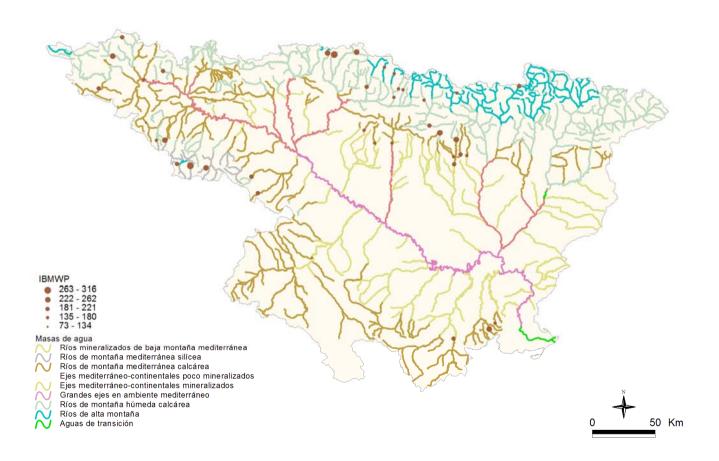


Figura 116. Distribución espacial de los valores de IBMWP en la Cuenca del Ebro 2010

B) IASPT (Iberian Average Score per Taxon)

Los valores del índice IASPT oscilaron entre los 4,29 puntos obtenidos en la localidad 3008 en el río Jalón en Campiel, hasta los 6,56 de la estación 1173 que se encuentra en el río Tirón aguas arriba de Fresneda de la Sierra. Un 79 % de las muestras presentaron valores superiores a 5 (**Figura 117**).La media de las estaciones fue de 5,59.

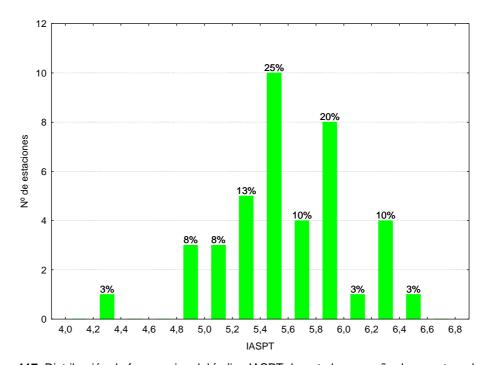


Figura 117. Distribución de frecuencias del índice IASPT durante la campaña de muestreo de 2010

Las diferencias entre tipos de ríos fueron significativas (**Tabla 51**), con los tipos 111 y 127 (ríos de montaña) destacando por encima de los demás tipos (**Tabla 53**; **Figura 118**). El tipo 116 presentó los valores más bajos.

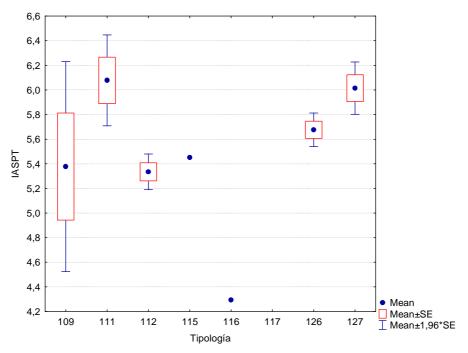


Figura 118. Distribución del índice IASPT por tipos de ríos

TABLA 53

Valor medio del IASPT, desviación estándar (SD), valores máximo y mínimo, y número de casos (N) para los diferentes tipos de ríos muestreados en 2010

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	2	5.38	4.94	5.81	0.61
111	Ríos de montaña mediterránea silícea	5	6.08	5.53	6.56	0.42
112	Ríos de montaña mediterránea calcárea	13	5.33	4.95	5.82	0.27
115	Ejes mediterráneo-continentales poco mineralizados	1	5.45	5.45	5.45	
116	Ejes mediterráneo-continentales mineralizados	1	4.29	4.29	4.29	
117	Grandes ejes en ambiente mediterráneo	0				
126	Ríos de montaña húmeda calcárea	14	5.68	5.31	6.21	0.26
127	Ríos de Alta Montaña	4	6.01	5.81	6.26	0.22

Se observó que los valores valores más elevados correspondieron a tramos de cabecera, **Figura 119**.

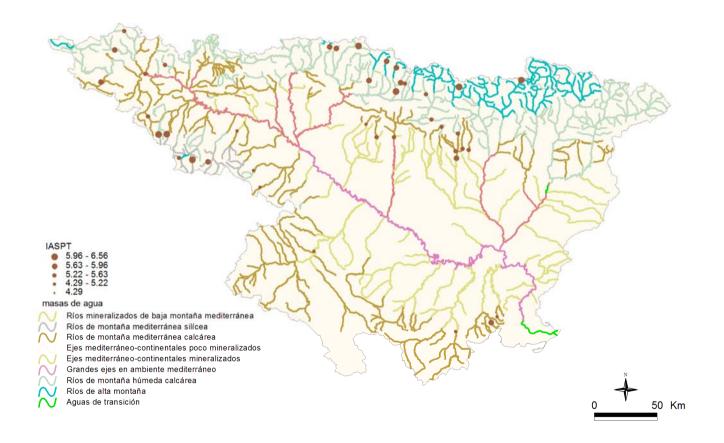


Figura 119. Distribución espacial de los valores de IASPT en la Cuenca del Ebro 2010

C) NTAX IBMWP (nº de Taxones IBMWP)

La riqueza del ecosistema fluvial, evaluada mediante el número de familias utilizadas en el cálculo del IBMWP (NTAX IBMWP) fue elevada.

Los valores oscilaron entre las 17 familias recogidas en la localidad 3008 (río Jalón en Campiel) hasta las 54 de la estación 1065 (río Urrobi en el Puente de la Cta. a Garralda). Un 77 % de las muestras presentaron valores por encima de 30 familias (**Figura 120**), la media de todas las muestras fue de 35 familias.

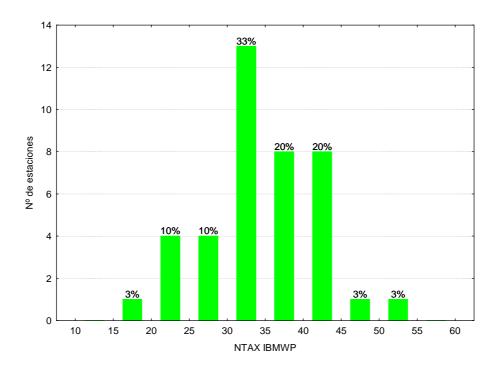


Figura 120. Distribución del Nº de Familias (NTAX IBMWP) durante la campaña de muestreo de 2010

Las diferencias entre tipos de ríos no resultaron significativas (**Tabla 51**), con los tipos 111 y 126, destacando por encima de los demás tipos (**Tabla 54**; **Figura 121**). Los valores más bajos se observaron en el tipo 116.

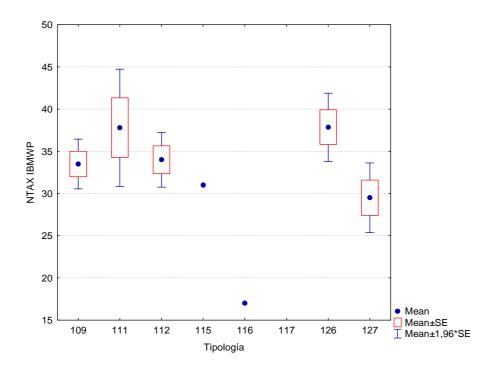


Figura 121. Distribución del número de familias (NTAX IBMWP) por tipos de ríos

TABLA 54

Valor medio del número de familias (NFAM IBMWP), desviación estándar (SD), valores máximo y mínimo, y número de casos (N) para los diferentes tipos de ríos muestreados en 2010

_	TIPOS	Denominación	N	Media	Min	Max	SD
-	109	Ríos mineralizados de baja montaña mediterránea	2	33.50	32.00	35.00	2.12
	111	Ríos de montaña mediterránea silícea	5	37.80	25.00	45.00	7.92
	112	Ríos de montaña mediterránea calcárea	13	34.00	24.00	42.00	5.96
	115	Ejes mediterráneo-continentales poco mineralizados	1	31.00	31.00	31.00	
	116	Ejes mediterráneo-continentales mineralizados	1	17.00	17.00	17.00	
	117	Grandes ejes en ambiente mediterráneo	0				
	126	Ríos de montaña húmeda calcárea	14	37.86	27.00	54.00	7.70
_	127	Ríos de Alta Montaña	4	29.50	24.00	34.00	4.20

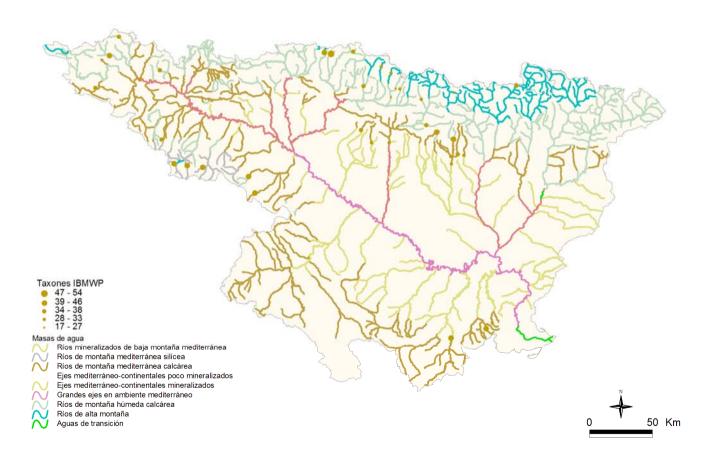


Figura 122. Distribución espacial del nº de taxones del IBMWP en la Cuenca del Ebro 2010

D) NTAX MAI (Nº de Taxones Totales de Macroinvertebrados)

Los valores oscilaron entre las 17 familias recogidas en la localidad 3008 (río Jalón en Campiel) hasta las 57 de la estación 1065 (río Urrobi en el Puente de la Cta. a Garralda). Un 76 % de las muestras presentaron valores por encima de 30 familias. (**Figura 123**), la media de todas las muestras fue de 36 familias.

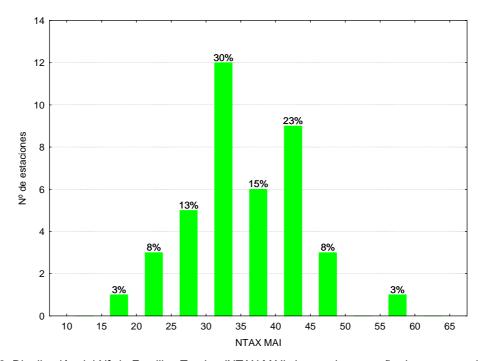


Figura 123. Distribución del Nº de Familias Totales (NTAX MAI) durante la campaña de muestreo de 2010

Las diferencias entre tipos de ríos no resultaron significativas (**Tabla 51**), con los tipos 111 y 126) destacando por encima de los demás tipos (**Tabla 55**; **Figura 124**).

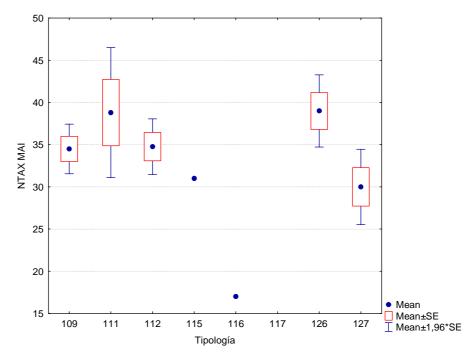


Figura 124. Distribución del número de familias totales (NTAX MAI) por tipos de ríos

El tipo 116 presentó los valores más bajos.

TABLA 55

Valor medio del número de familias totales (NTAX MAI), desviación estándar (SD), valores máximo y mínimo, y número de casos (N) para los diferentes tipos de ríos muestreados en 2010

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	2	35	33	36	2.12
111	Ríos de montaña mediterránea silícea	5	39	25	47	8.79
112	Ríos de montaña mediterránea calcárea	13	35	24	44	6.07
115	Ejes mediterráneo-continentales poco mineralizados	1	31	31	31	
116	Ejes mediterráneo-continentales mineralizados	1	17	17	17	
117	Grandes ejes en ambiente mediterráneo	0				
126	Ríos de montaña húmeda calcárea	14	39	27	57	8.17
127	Ríos de Alta Montaña	4	30	24	34	4.55

En la **Figura 125**, se representan gráficamente el nº de familias totales de las estaciones de referencia de la Cuenca del Ebro. En ella se observa que los mayores valores correspondieron a ríos del Pirineo Navarro y a ríos síliceos del Sistema Ibérico Riojano. Todos ellos presentes en zonas muy bien conservadas.

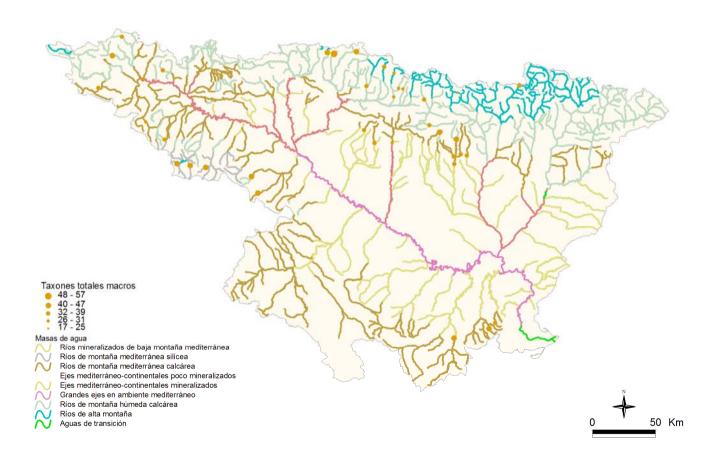


Figura 125. Distribución espacial del nº de familias totales en la Cuenca del Ebro 2010

5.3.2 Macrófitos: IVAM (Índice de Vegetación Acuática Macroscópica)

A.) Nº de géneros de macrófitos

El número de géneros encontrados en las diferentes estaciones de muestreó osciló desde 8 géneros hallados en la estación 1169 del río Oca en Villalmondar, hasta los 25 de la estación de 1380 del río Bergantes en Mare de Deu de la Balma. La distribución de frecuencias de los géneros hallados en los diferentes ríos muestreados se presenta en la **Figura 126**, en ella cabe destacar que un 78 % de las estaciones tuvieron entre 8 y 16 géneros. La media de géneros para el total de las estaciones fue 13.

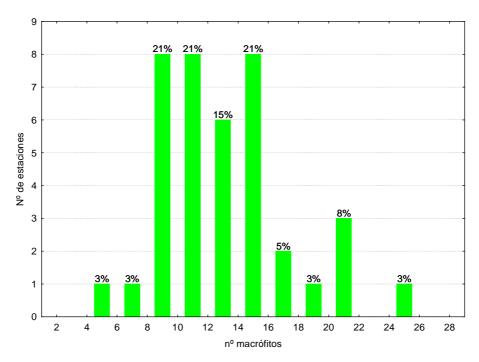


Figura 126. Distribución del Nº de géneros de macrófitos durante la campaña de muestreo de 2010

Al analizar los datos por las diferentes tipologías presentes en la cuenca, **Figura 127, Tabla 56**, se observó que el mayor número de géneros se obtuvo en los tipos 109 y 112. El menor valor se obtuvo en en tipo 116.

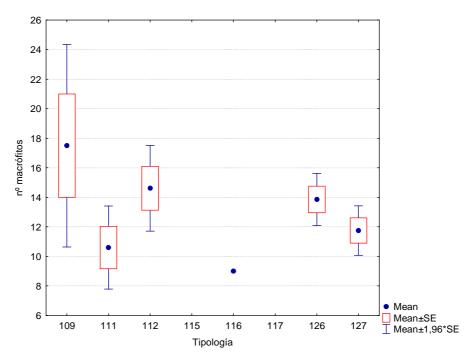


Figura 127. Distribución del número de géneros de macrófitos por tipos de ríos

TABLA 56

Valor medio del número de géneros totales, desviación estándar (SD), valores máximo y mínimo, y número de casos (N) para los diferentes tipos de ríos muestreados en 2010

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	2	17.50	14	21	4.95
111	Ríos de montaña mediterránea silícea	5	10.60	5	13	3.21
112	Ríos de montaña mediterránea calcárea	13	14.62	8	25	5.35
115	Ejes mediterráneo-continentales poco mineralizados	0				
116	Ejes mediterráneo-continentales mineralizados	1	9.00	9	9	
117	Grandes ejes en ambiente mediterráneo	0				
126	Ríos de montaña húmeda calcárea	14	13.86	9	21	3.37
127	Ríos de Alta Montaña	4	11.75	10	14	1.71

En la **Figura 128**, de la página siguiente, se observa que las estaciones que presentaron mayor número de macrófitos correspondieron, por lo general, a zonas montañosas del Maestrazgo y de la Sierra de Guara. Tramos todos ellos de difícil acceso, con bajas presiones y bien conservadas.

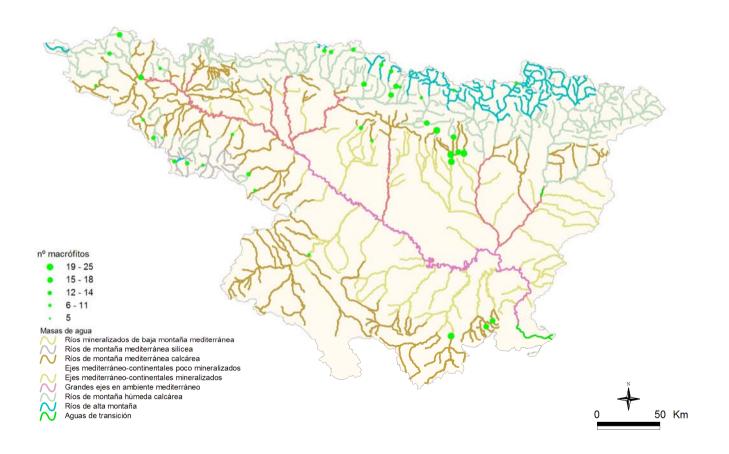


Figura 128. Distribución espacial del nº géneros de macrófitos en la Cuenca del Ebro 2010

B.) IVAM (Índice de Vegetación Acuática Macroscópica)

En la **Figura 129** se puede observar la distribución de frecuencias de los valores del índice IVAM, el 76 % de las estaciones obtuvo valores superiores a 5,5 puntos. Los valores oscilaron entre los 3,87 puntos, obtenidos en la estación 1169 (río Oca en Villalmondar), hasta los 6,78 de la estación 2027 (río Arazas en la Pradera de Ordesa). Se obtuvo una media de 5,88 puntos.

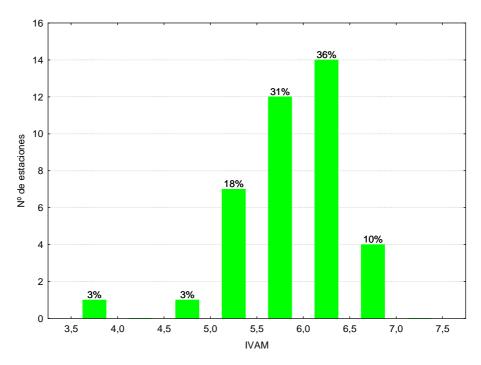


Figura 129. Distribución de frecuencias del índice IVAM durante la campaña de muestreo de 2010.

No se observaron diferencias significativas entre los tipos de ríos (**Tabla 51**). El tipo 127 presentó los valores más elevados (**Tabla 57**; **Figura 130**). El valor más bajo se obtuvo en el tipo 112.

TABLA 57

Valor medio del índice IVAM, desviación estándar (SD), valores máximo y mínimo, y número de casos (N) para los diferentes tipos de ríos muestreados en 2010

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	2	6.17	5.92	6.42	0.35
111	Ríos de montaña mediterránea silícea	5	5.99	5.48	6.57	0.47
112	Ríos de montaña mediterránea calcárea	13	5.69	3.87	6.51	0.69
115	Ejes mediterráneo-continentales poco mineralizados	0				
116	Ejes mediterráneo-continentales mineralizados	1	4.94	4.94	4.94	
117	Grandes ejes en ambiente mediterráneo	0				
126	Ríos de montaña húmeda calcárea	14	5.88	5.07	6.43	0.38
127	Ríos de Alta Montaña	4	6.45	5.96	6.78	0.36

220

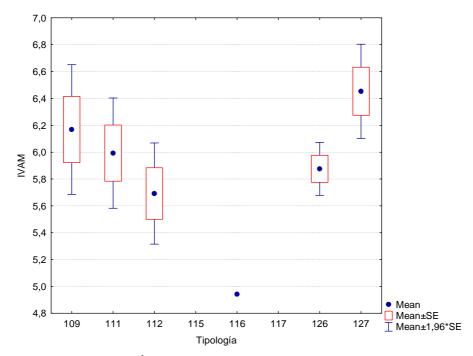


Figura 130. Distribución del Índice de Vegetación Acuática Macrofítica (IVAM) por tipos de ríos

En la siguiente página, **Figura 131**, se representan cartográficamente los resultados del índice IVAM obtenidos durante los muestreos del verano de 2010. Al igual que en el apartado anterior, destacan las estaciones de las zonas montañosas del Pirineo, del Maestrazgo y de la Sierra de Guara.

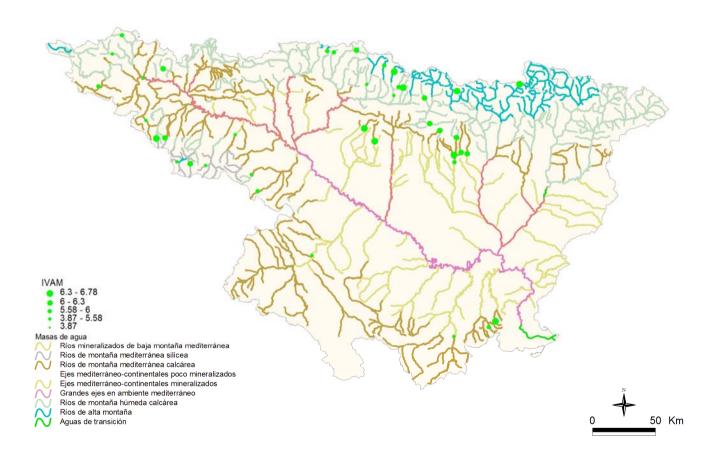


Figura 131. Distribución espacial del IVAM en la Cuenca del Ebro 2010

5.3.3 Fitobentos (diatomeas): IPS (Índice de Poluosensibilidad Específica)

El índice seleccionado para la evaluación del estado ecológico utilizando las diatomeas ha sido el IPS (Índice de Poluosensibilidad Específica) (Cemagref, 1982), que es considerado como el que mejor responde a las poblaciones de diatomeas en la Cuenca del Ebro y el que se indica como oficial en la Instrucción de Planificación Hidrológica, IPH.

El índice IPS, se aplicó en un total de 36 estaciones de las 42 en las que se tenía previsto muestrear. En el resto no se pudo tomar muestra de diatomeas, bien por una elevada turbidez del agua o a la ausencia de un sustrato adecuado libre de sedimentos y algas filamentosas.

El índice IPS osciló entre los 14,4 puntos, obtenidos en la estación 1169 río Oca en Villalmondar, hasta el máximo de 20 puntos que se obtuvo en varias estaciones, como p.ej. en las estaciones 1387 (Urbión en Santa Cruz del Valle) y en la 2027 (Arazas/Prdera de Ordesa). En la **Figura 132**, se presenta gráficamente la distribución de frecuencias de los datos del índice IPS obtenidos, en ella se observa que el 58 % de las estaciones obtuvieron valores superiores a 18,5 puntos. La media fue de 18,6 puntos.

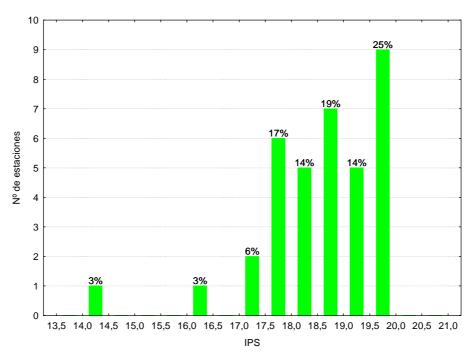


Figura 132. Distribución de frecuencias del índice IPS durante la campaña de muestreo de 2010

TABLA 58

Valor medio del índice IPS, desviación estándar (SD), valores máximo y mínimo, y número de casos (N) para

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	2	18.45	18.20	18.70	0.35
111	Ríos de montaña mediterránea silícea	5	19.46	18.60	20.00	0.63
112	Ríos de montaña mediterránea calcárea	10	18.09	14.40	19.70	1.56
115	Ejes mediterráneo-continentales poco mineralizados	1	17.70	17.70	17.70	
116	Ejes mediterráneo-continentales mineralizados	0				
117	Grandes ejes en ambiente mediterráneo	0				
126	Ríos de montaña húmeda calcárea	14	18.66	16.50	20.00	1.02
127	Ríos de Alta Montaña	4	19.00	18.10	20.00	0.90

los diferentes tipos de ríos muestreados en 2010

Las diferencias entre tipos de ríos no fueron significativas (**Tabla 51**), los tipos 111 y 127 (ríos de montaña) obtuvieron los valores más elevados (**Tabla 58**; **Figura 133**). La estación con menor puntuación se encontró en el tipo 112.

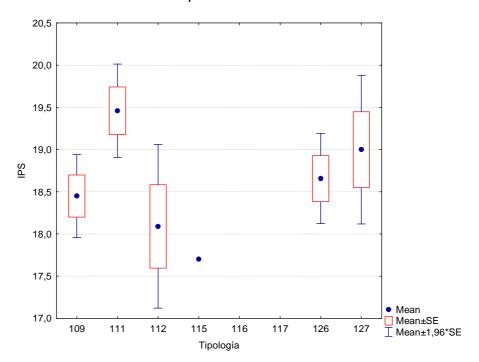


Figura 133. Valores medios del índice IPS por tipos de ríos

En la **Figura 134**, se puede observar que los valores más altos del índice IPS, se obtuvieron en las estaciones situadas en el Pirineo y en el Sistema Ibérico.

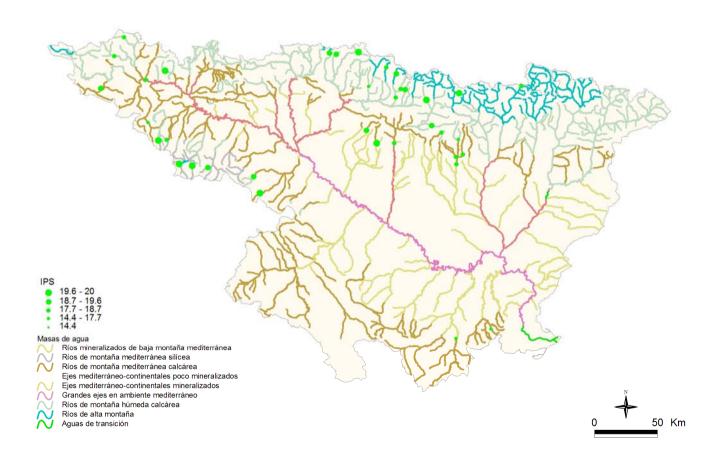


Figura 134. Distribución espacial del IPS en la Cuenca del Ebro 2010

5.4 Resultados físico-químicos

En el **Anexo 1** se incluyen los resultados obtenidos para los parámetros físico-químicos e hidromorfológicos tomados *in situ*, así como de las analíticas de laboratorio (nitratos, nitritos, amonio, fosfatos y sílice), obtenidos durante los muestreos de 2010.

En los siguientes apartados se sintetizan los resultados obtenidos y se realizan comentarios sobre cada uno de los parámetros físico-químicos analizados. Asimismo, se realizaron contrastes no paramétricos de Kruskal-Wallis para testar diferencias entre distintos tipos de ríos. Los resultados de estos análisis se sintetizan en la **Tabla 59**.

TABLA 59

Tests de Kruskal-Wallis H por TIPOS

En rojo y negrita aquellas diferencias significativas (p < 0.05)

Variable	Н	N	p
Ta (°C)	14,32	40	0,026
рН	6,82	37	0,338
Conductividad (µS/cm)	18,88	39	0,002
O ₂ disuelto (mg/l)	6,10	40	0,411

Los comentarios relativos a la **Tabla 59** se realizan, para cada parámetro, en los apartados siguientes. Los diagramas de cajas muestran el comportamiento de las diferentes variables en las diferentes tipologías de ríos. Estos resultados se acompañan de tablas resumen de los principales estadísticos observados (número de casos o N, media, desviación estándar, máximo –Max- y mínimo –Min-) para cada variable. Asimismo, las variables han sido cartografiadas para interpretar su dimensión espacial en la Cuenca del Ebro durante la presente campaña de muestreo.

5.4.1 Temperatura

Las temperaturas oscilaron entre los 9,7 °C medidos el día 18 de agosto en la estación 2027 (Arazas/Pradera de Ordesa) hasta los 24,5 °C registrados el 17 de agosto en la estación 2014 en el río Guarga en Ordovés. La temperatura media, para el conjunto de estaciones, fue de 17,2 °C.

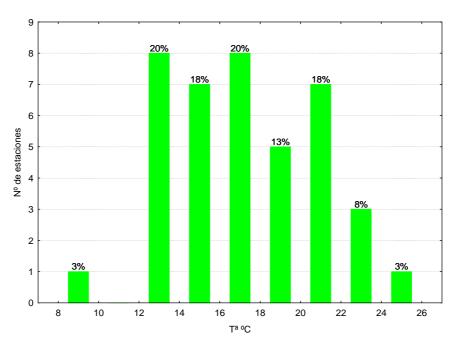
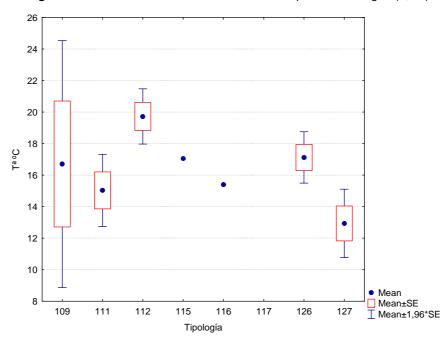



Figura 135. Distribución de frecuencias de la temperatura del agua (T, °C)

Figura 136. Temperatura del agua (T, °C) para las diferentes tipologías de las estaciones durante la campaña de muestreo 2010

Las temperaturas fueron significativamente diferentes entre tipos de ríos (**Tabla 59**; **Figura 136**; **Tabla 60**), con las tipologías 111 (*Ríos de montaña mediterránea silícea*) y 127 (*Ríos de alta montaña*) presentando las temperaturas más frías y los tipos 112 (*Ríos de montaña mediterránea calcárea*) y 126 (*Ríos de montaña húmeda calcárea*) las más cálidas.

TABLA 60Temperatura media, desviación estándar (SD), valor máximo y mínimo y número de casos (N) para los diferentes tipos de ríos (valores en °C) durante el muestreo de 2010.

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	2	16.71	12.71	20.70	5.65
111	Ríos de montaña mediterránea silícea	5	15.03	12.37	18.35	2.62
112	Ríos de montaña mediterránea calcárea	13	19.72	12.11	23.94	3.22
115	Ejes mediterráneo-continentales poco mineralizados	1	17.05	17.05	17.05	
116	Ejes mediterráneo-continentales mineralizados	1	15.40	15.40	15.40	
117	Grandes ejes en ambiente mediterráneo	0				
126	Ríos de montaña húmeda calcárea	14	17.12	13.34	24.52	3.11
127	Ríos de Alta Montaña	4	12.94	9.75	14.85	2.21

La distribución espacial de las temperaturas observadas se muestra en la **Figura 137**. Como se puede observar, las temperaturas más elevadas correspondieron a los tramos de la Sierra de Guara, esto podría ser debido al bajo caudal, anchura del cauce, y a que la vegetación de ribera es de porte arbustivo, con algún árbol aislado.

Figura 137. Temperatura (°C) medida en las estaciones de muestreo en 2010

5.4.2 pH

El pH registrado durante los muestreos del año 2010, mostró un rango de variación relativamente amplio, desde los 6,92 medidos en la estación 1387 (Urbión/Santa Cruz del Valle) hasta los 8,74 alcanzados en la 1380 (Bergantes/Mare de Deu de la Balma).

De todas las masas de agua estudiadas, el 41% presentaban valores de pH comprendidos entre 8,00 y 8,2. La media fue de 8,06. Podemos concluir, por tanto, que las aguas estudiadas son aguas con una cierta basicidad, lo cual es propio de sistemas con predominancia de geologías calizas. En la **Figura 138**, se observa la distribución de frecuencias de los valores de pH.

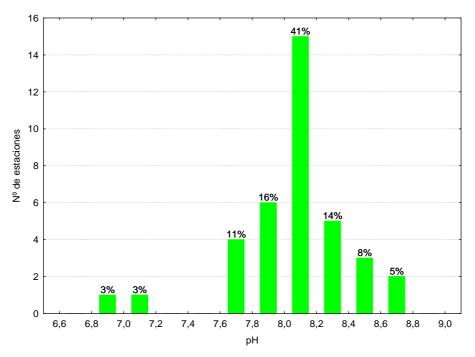
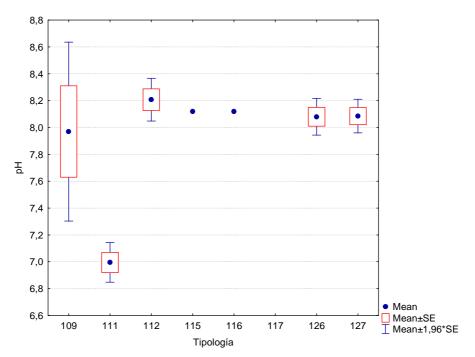



Figura 138. Distribución de frecuencias del pH (unidades de pH)

El pH no resultó significativamente diferente entre tipos (**Tabla 59**; **Figura 139**; **Tabla 61**). El tipo más extremo fue el 111 (*Ríos de montaña mediterránea silícea*).

Figura 139. pH (unidades de pH) para las diferentes tipologías de ríos durante la campaña de muestreo de 2010

TABLA 61
pH promedio, desviación estándar (SD), valor máximo y mínimo y número de casos (N) para los diferentes tipos de ríos durante el muestreo de 2010.

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	2	7.97	7.63	8.31	0.48
111	Ríos de montaña mediterránea silícea	2	7.00	6.92	7.07	0.11
112	Ríos de montaña mediterránea calcárea	13	8.21	7.72	8.74	0.29
115	Ejes mediterráneo-continentales poco mineralizados	1	8.12	8.12	8.12	
116	Ejes mediterráneo-continentales mineralizados	1	8.12	8.12	8.12	
117	Grandes ejes en ambiente mediterráneo	0				
126	Ríos de montaña húmeda calcárea	14	8.08	7.73	8.60	0.26
127	Ríos de Alta Montaña	4	8.09	7.90	8.18	0.13

La distribución espacial de los valores de pH observados se muestra en la **Figura 140**. Se puede observar que gran parte de los valores más elevados (pH básico) correspondieron a las estaciones de muestreo situadas en zonas de montaña de geología calcárea.

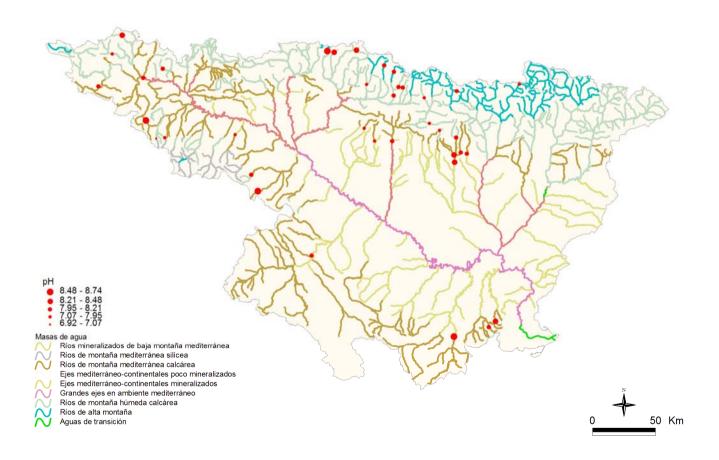
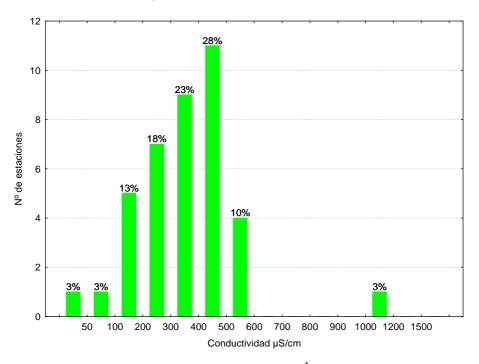



Figura 140. pH medido en las estaciones de muestreo en 2010

5.4.3 Conductividad

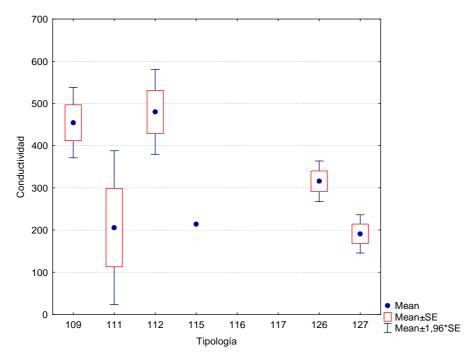

Los valores de conductividad oscilaron entre los 40 μS·cm⁻¹ de la localidad 1173 (Tirón/Aguas arriba de Fresneda de la Sierra), hasta los 1050 μS·cm⁻¹ de la 1169 (Río Oca/Villalmondar) cuya elevada conductividad es debida a una elevada salinidad natural de origen geológico. A escala global del estudio, se obtuvo un valor medio de 348 μS·cm⁻¹. La distribución de frecuencias se presenta en la **Figura 141.**

Figura 141. Distribución de frecuencias de la conductividad (μS⋅cm⁻¹)

En la figura superior se observa que el 87% de las estaciones presentó valores inferiores a 500 μS·cm⁻¹.

Figura 142. Conductividad (μS·cm⁻¹) para las diferentes tipologías de ríos en las estaciones muestreadas durante la campaña de 2010

Se observaron diferencias entre los diferentes tipos de masas fluviales (**Tabla 59**; **Figura 142**; **Tabla 62**), con los tipos 109 y 111 presentando los contrastes más marcados. La variabilidad observada fue muy acentuada en algunos grupos, como el 111 (*Ríos de montaña mediterránea silícea*) o el 112 (*Ríos de montaña mediterránea calcárea*).

TABLA 62

Conductividad media, desviación estándar (SD), valor máximo y mínimo y número de casos (N) para los diferentes tipos de ríos (valores en μS⋅cm⁻¹)

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	2	454.50	412	497	60.10
111	Ríos de montaña mediterránea silícea	5	205.80	40	558	207.91
112	Ríos de montaña mediterránea calcárea	13	480.08	301	1050	184.37
115	Ejes mediterráneo-continentales poco mineralizados	1	214.00	214	214	
116	Ejes mediterráneo-continentales mineralizados	0				
117	Grandes ejes en ambiente mediterráneo	0				
126	Ríos de montaña húmeda calcárea	14	315.79	137	482	91.97
127	Ríos de Alta Montaña	4	191.00	128	239	46.22

En el mapa (**Figura 143**) se aprecia claramente como ríos de zonas calizas, Sierra de Guara por ejemplo, presentaron los valores más elevados de conductividad.

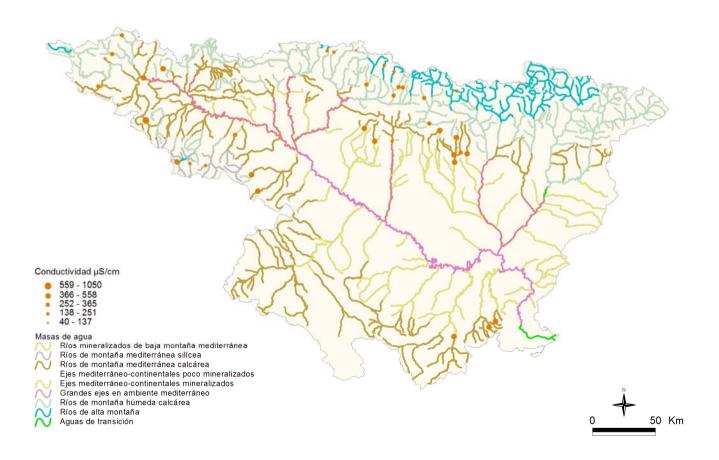


Figura 143. Conductividad (μS·cm⁻¹) medida en las estaciones de muestreo en 2010

5.4.4 Oxígeno disuelto

Los valores de oxígeno disuelto en las estaciones muestreadas oscilaron entre los 7,40 mg/L de la estacion 2005 en el río Isuala en Alberuela de la Liena, hasta los 13,79 mg/L medidos en el río Osía en Jasa, (CEMAS 2013). Un 75 % de las estaciones presentó valores comprendidos en el rango 8-11 mg/L, **Figura 144.** La media para las estaciones de referencia fue de 9,6 mg/L.

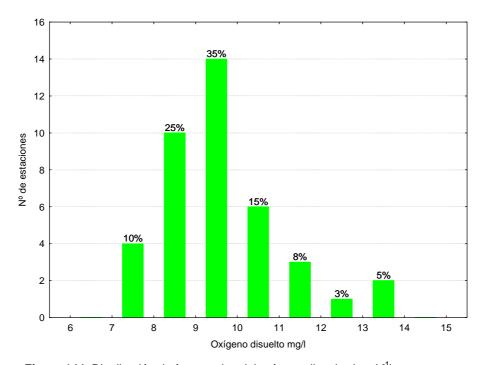


Figura 144. Distribución de frecuencias del oxígeno disuelto (mg·L⁻¹)

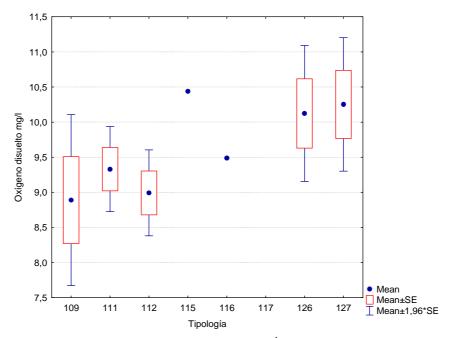


Figura 145. Concentraciones de oxígeno (mg·L⁻¹) para las diferentes tipologías de ríos en las estaciones muestreadas durante la campaña de 2010

No se encontraron diferencias entre tipos de ríos (**Tabla 59**). Las diferencias de valores de oxígeno observadas en los diferentes tipos de ríos se muestran en la **Figura 145** y en la **Tabla 63**.

TABLA 63

Concentración de oxígeno media, desviación estándar (SD), valor máximo y mínimo y número de casos (N) para los diferentes tipos de ríos en 2010 (valores en mg·L⁻¹)

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	2	8.89	8.27	9.51	0.88
111	Ríos de montaña mediterránea silícea	5	9.33	8.62	10.37	0.69
112	Ríos de montaña mediterránea calcárea	13	8.99	7.40	11.22	1.13
115	Ejes mediterráneo-continentales poco mineralizados	1	10.44	10.44	10.44	
116	Ejes mediterráneo-continentales mineralizados	1	9.49	9.49	9.49	
117	Grandes ejes en ambiente mediterráneo	0				
126	Ríos de montaña húmeda calcárea	14	10.12	7.81	13.79	1.85
127	Ríos de Alta Montaña	4	10.25	9.00	11.27	0.97

En la **Figura 146** se muestran espacialmente los valores de concentración de oxígeno disuelto de las estaciones de referencia de la Cuenca. Destacan los valores de ríos Osía, Estarrún y Guatizalema, todos ellos con zonas de rápidos y abundancia de algas filamenotas indicadoras de buena calidad de las aguas.

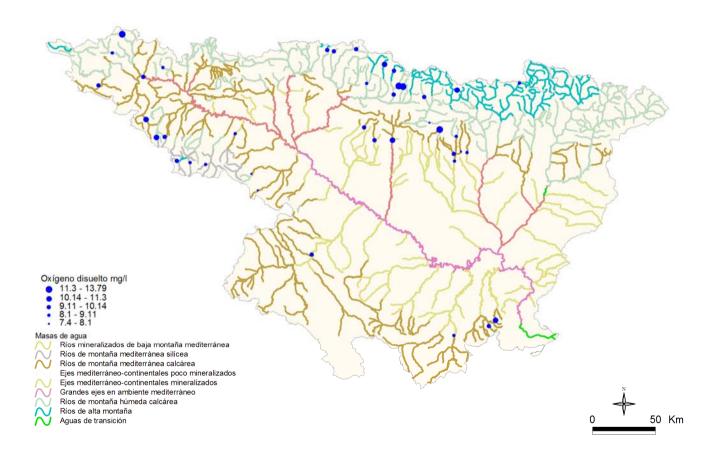


Figura 146. Concentración de oxígeno (mg·L⁻¹) medida en las estaciones de muestreo en 2010

5.5 Resultados hidromorfológicos

En el **Anexo 1** se incluyen los índices QBR e IHF obtenidos durante los muestreos realizados en el año 2010.

Se realizaron contrastes no paramétricos de Kruskal-Wallis para testar diferencias entre los distintos tipos de ríos. Los resultados de estos análisis se sintetizan en la **Tabla 64**.

TABLA 64

TESTS DE KRUSKAL-WALLIS H POR TIPOS*

Se incluyen los valores de probabilidad p, en rojo y negrita aquellas diferencias significativas

Variable	Н	N	р
IHF	10,35	40	0,110
QBR	7,22	37	0,301

Los comentarios para estas dos tablas se realizan, para cada parámetro, en los puntos siguientes.

5.5.1 Índice de Hábitat Fluvial (IHF)

La calidad del hábitat fluvial, evaluada mediante el índice IHF, osciló entre los 54 puntos de la estación 0623 (Algas en Mas de Bañetes) y los 83 de la estación 1398 (Guatizalema en Nocito). El mayor porcentaje de estaciones, con un 30 %, correspondió al rango de puntuación 65-70, **Figura 147**. El valor medio para el conjunto de la estaciones fue de 66 puntos.

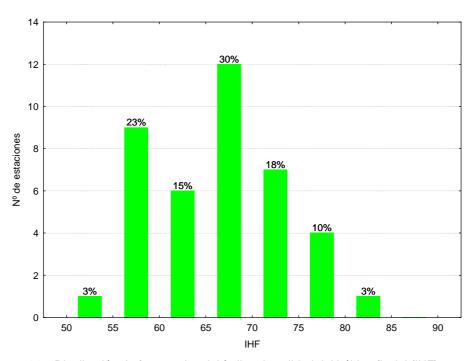


Figura 147. Distribución de frecuencias del índice de calidad del hábitat fluvial (IHF) en 2010

Las diferencias entre tipos de masas de agua no fueron significativas (**Tabla 64**), Los valores más elevados del índice correspondieron al tipo 111 (*Ríos de montaña mediterránea silícea*) y los más bajos al tipo 127 (*Ríos de Alta Montaña*), las diferencias entre el resto de las tipologías fueron muy bajas (**Figura 148**; **Tabla 65**). Destaca la elevada variabilidad de los tipos de montaña, 112 y 126.

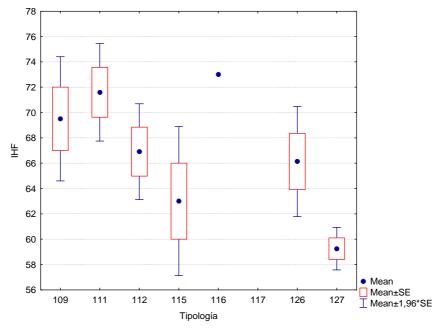


Figura 148. Distribución del índice de calidad del hábitat fluvial (IHF) por tipos de ríos

240

TABLA 65

Valor medio del índice de calidad del índice de hábitat fluvial (IHF), desviación estándar (SD), valores máximo y mínimo, y número de casos (N) para los diferentes tipos de ríos muestreados en 2010

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	2	69.50	67	72	3.54
111	Ríos de montaña mediterránea silícea	5	71.60	67	78	4.39
112	Ríos de montaña mediterránea calcárea	12	66.92	54	78	6.68
115	Ejes mediterráneo-continentales poco mineralizados	2	63.00	60	66	4.24
116	Ejes mediterráneo-continentales mineralizados	1	73.00	73	73	
117	Grandes ejes en ambiente mediterráneo	0				
126	Ríos de montaña húmeda calcárea	14	66.14	57	83	8.30
127	Ríos de Alta Montaña	4	59.25	57	61	1.71

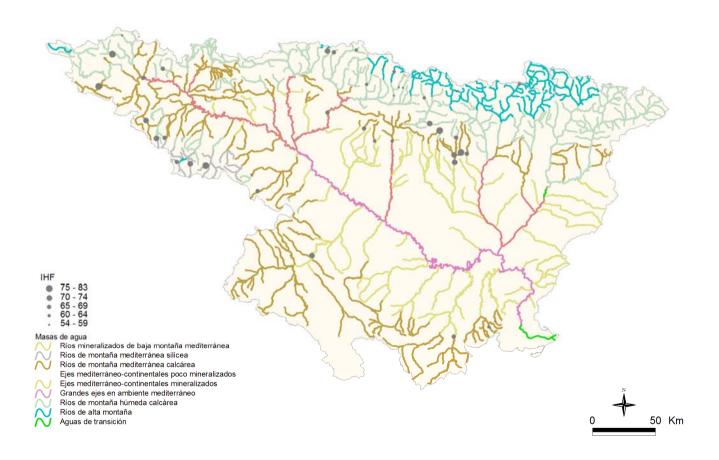


Figura 149. Distribución de los valores de IHF en las estaciones de muestreo de la Cuenca del Ebro en 2010

En la **Figura 149** se muestra la distribución de los valores de IHF obtenidos en la diferentes estaciones muestreas, destacan los elevados valores obtenidos en algunas estaciones del Sistema Ibérico y de la Sierra de Guara.

5.5.2 Índice de Calidad del Bosque de Ribera (QBR)

La calidad de las riberas, evaluada mediante el índice QBR, fue elevada (**Figura 150**). Los valores oscilaron entre los 50 puntos obtenidos para la estación 1191 en el río Linares en San Pedro Manrique, hasta los máximos de 100 obtenidos en numerosas ocasiones, como por ejemplo en la estación 1083 (río Arba de Luesia en Luesia) o en la 2003 (río Rudrón en Tablada de Rudrón), entre otras. En total un 87% de las estaciones obtuvieron valores elevados que serían indicativos de la buena calidad en la que se encuentra la vegetación de ribera.

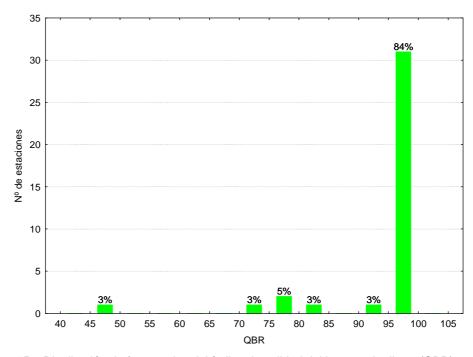


Figura 150. Distribución de frecuencias del índice de calidad del bosque de ribera (QBR) en 2010

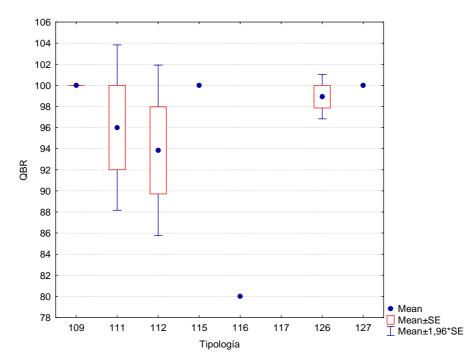


Figura 151. Distribución del índice de calidad del bosque de ribera (QBR) por tipos de ríos

Las diferencias entre tipos de masas de agua no fueron significativas en el caso del QBR (**Tabla 64**), con los tipos 109 (*ríos mineralizados de baja montaña mediterránea*), 126 (*ríos de montaña húmeda calcárea*) y 127 (*ríos de alta montaña*) presentando riberas de mayor calidad (**Figuras 151; Tabla 66**). La mayor variabilidad se observó en el tipo 112 (*ríos de montaña mediterránea calcárea*).

TABLA 66

Valor medio del índice de calidad del bosque de ribera (QBR), desviación estándar (SD), valores máximo y mínimo y número de casos (N) para los diferentes tipos de ríos muestreados en 2010

TIPOS	Denominación	N	Media	Min	Max	SD
109	Ríos mineralizados de baja montaña mediterránea	2	100.00	100	100	0.00
111	Ríos de montaña mediterránea silícea	5	96.00	80	100	8.94
112	Ríos de montaña mediterránea calcárea	13	93.85	50	100	14.88
115	Ejes mediterráneo-continentales poco mineralizados	1	100.00	100	100	
116	Ejes mediterráneo-continentales mineralizados	1	80.00	80	80	
117	Grandes ejes en ambiente mediterráneo	0				
126	Ríos de montaña húmeda calcárea	14	98.93	85	100	4.01
127	Ríos de Alta Montaña	1	100.00	100	100	

Si se analiza el mapa con la distribución espacial de las clases de calidad del QBR que se obtuvieron (**Figura 152**), se puede observar que los valores más elevados del QBR se corresponden con zonas de cabecera y tramos de río con baja presión agrícola, o que se hallan encajados en el terreno y presentan unas riberas inaccesibles.

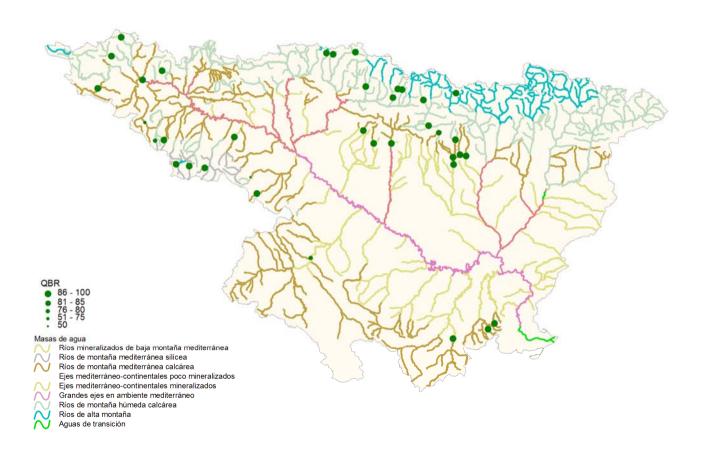


Figura 152. Distribución espacial de los valores de QBR de las estaciones muestreadas en 2010

5.6 Estado Ecológico

Una vez analizados los resultados de los indicadores biológicos, hidromorfológicos y físicoquímicos para las diferentes estaciones y masas de agua estudiadas, y en aplicación de la Directiva Marco del Agua (DMA, DOCE 2000), se ha procedido a valorar el estado ecológico de las masas de agua muestreadas en el año 2010.

A este respecto, en un primer apartado se han utilizado las métricas basadas en macroinvertebrados, macrófitos y diatomeas, obteniéndose el estado ecológico según indicadores biológicos.

En los siguientes apartados, se incluye un avance del estado ecológico de las masas de agua estudiadas sobre la base de los indicadores hidromorfológicos.

En un último apartado, y como conclusión, según la metodología establecida en la IPH se evaluó el estado ecológico final de las masas de agua (ríos), presentando los resultados para los diferentes tramos fluviales. De las 42 masas estudiadas, se pudo calcular su estado ecológico en 40 estaciones, teniendo en cuenta, alguno o todos los indicadores biológicos (macroinvertebrados, macrófitos y diatomeas), en 2 estaciones no se pudo calcular por la imposibilidad de tomar datos de alguno de los indicadores.

5.6.1 Indicadores de calidad biológicos: macroinvertebrados, macrófitos y diatomeas.

En el **Cuadro 6** se muestran los valores de estado ecológico en cada una de las estaciones de muestreo de 2010.

CUADRO 6

ESTADO ECOLÓGICO

MEDIANTE INDICADORES DE BIOLÓGICOS

MB (azul) = muy bueno; B (verde) = bueno; Mo (amarillo) = moderado;

D (anaranjado) = deficiente; M (rojo) = malo

En blanco estaciones no muestreadas

CEMAS	Toponimia	IdMasa	Tipología	IBMWP	EQR IBMWP	EE- IBMWP	IPS	EQR IPS	EE- IPS	IVAM	EE-	EE-BIO- sin IVAM	EE- con- IVAM
0011	Ebro / Zaragoza - Monzalbarba	452	117										
0166	Jerea / Palazuelos de Cuesta Urria	234	112	170	1.13	MB	18.50	1.09	MB	5.46	В	MB	В
0197	Leza / Ribafrecha	276	112	123	0.82	В				5.33	В	В	В
0539	Aurin / Isín	568	126	178	1.11	MB	20.00	1.13	MB	6.17	MB	MB	MB
0623	Algas / Mas de Bañetes	398	112	170	1.13	MB				6.30	МВ	MB	МВ
0808	Gállego / Santa Eulalia	425	115	169	1.13	MB	17.70	1.04	MB			MB	MB
0816	Escá / Burgui	526	126	213	1.32	MB	17.10	0.97	MB	5.41	В	MB	В
1004	Nela / Puentedey	474	126	262	1.63	MB	18.40	1.04	MB	5.07	В	MB	В
1006	Trueba / El Vado	477	126	207	1.29	MB	18.60	1.05	MB	5.72	MB	MB	MB
1065	Urrobi / Puente carretera Garralda	533	126	316	1.96	MB	19.40	1.10	MB	5.68	В	MB	В
1083	Arba de Luesia / Luesia	100	109	173	1.08	MB	18.70	1.07	MB	6.42	MB	MB	МВ
1141	Alcanadre / Puente a las Cellas	157	109	186	1.16	MB	18.20	1.04	MB	5.92	МВ	MB	MB
1169	Oca / Villalmondar	221	112	134	0.89	MB	14.40	0.85	В	3.87	Мо	В	Mo
1173	Tirón / Aguas arriba Fresneda de la Sierra	179	111	236	1.31	MB	18.60	1.13	MB	6.20	МВ	МВ	MB

CEMAS	Toponimia	IdMasa	Tipología	IBMWP	EQR IBMWP	EE- IBMWP	IPS	EQR IPS	EE- IPS	IVAM	EE-	EE-BIO- sin IVAM	EE- con- IVAM
1178	Najerilla / Villavelayo (aguas arriba)	183	111	221	1.23	MB	19.70	1.19	MB	5.54	В	MB	В
1191	Linares / San Pedro Manrique	296	112	200	1.33	MB	19.40	1.14	MB	5.15	В	MB	В
1193	Alhama / Magaña	295	112	215	1.43	MB	19.70	1.16	MB	5.85	MB	MB	MB
1240	Matarraña / Beceite, Parrizal	383	112	231	1.54	MB	17.10	1.01	MB	5.79	MB	MB	МВ
1270	Ésera / Plan de l'Hospital de Benasque	764	127	213	1.35	MB	18.40	0.98	МВ	6.63	МВ	MB	МВ
1279	Arba de Biel / El Frago	304	112	172	1.15	MB	19.60	1.15	MB	6.51	MB	MB	MB
1282	Vero / Camping de Alquézar	375	112	176	1.17	MB				6.11	MB	MB	МВ
1380	Bergantes / Mare Deu de la Balma	356	112	203	1.35	MB	17.60	1.04	MB	5.52	В	MB	В
1387	Urbión / Santa Cruz del Valle	180	111	158	0.88	MB	20.00	1.21	MB	6.57	МВ	MB	МВ
1393	Erro / Sorogain	535	126	243	1.51	MB	19.30	1.09	MB	5.96	MB	MB	MB
1398	Guatizalema / Nocito	686	126	240	1.49	MB	18.00	1.02	MB	6.21	MB	MB	MB
1446	Irati / Cola Embalse de Irabia	531	126	236	1.47	MB	19.70	1.11	MB	6.17	MB	MB	МВ
1448	Veral / Zuriza	694	127	180	1.14	MB	18.10	0.97	MB	5.96	MB	MB	MB
2001	Urbión / Viniegra de Abajo	194	111	280	1.56	MB	20.00	1.21	MB	6.18	MB	MB	МВ
2002	Mayor / Aguas Abajo Villoslada de Cameros	197	111	248	1.38	MB	19.00	1.15	МВ	5.48	В	МВ	В
2003	Rudrón / Tablada de Rudrón	217	112	198	1.32	MB	18.70	1.10	МВ	5.58	В	MB	В

CEMAS	Toponimia	IdMasa	Tipología	IBMWP	EQR IBMWP	EE- IBMWP	IPS	EQR IPS	EE- IPS	IVAM	EE-	EE-BIO- sin IVAM	EE- con- IVAM
2005	Isuala / Alberuela de la Liena	377	112	188	1.25	MB	17.90	1.05	MB	6.16	МВ	MB	МВ
2007	Alcanadre / Casbas	381	112	172	1.15	MB	18.00	1.06	MB	6.37	MB	MB	MB
2011	Omecillo / Corro	481	126	204	1.27	MB	19.60	1.11	MB	6.06	MB	MB	MB
2012	Estarrón / Aísa	514	126	160	0.99	MB	19.40	1.10	MB	6.43	MB	MB	MB
2013	Osia / Jasa	517	126	158	0.98	MB	18.60	1.05	MB	5.88	MB	MB	MB
2014	Guarga / Ordovés	574	126	190	1.18	MB	18.70	1.06	MB	6.09	MB	MB	MB
2023	Mascún / Rodellar	684	126	239	1.48	MB	16.50	0.93	MB	6.00	MB	MB	MB
2024	Aragón Subordán / Embún	518	126	161	1.00	MB	17.90	1.01	MB	5.41	В	MB	В
2027	Arazas / Torla (pradera Ordesa)	785	127	147	0.93	MB	20.00	1.07	MB	6.78	MB	MB	МВ
2029	Aragón Subordán / Hecho (Selva de Oza)	693	127	170	1.08	MB	19.50	1.04	MB	6.43	MB	MB	МВ
3007	Aragón / Gallipienzo (aguas abajo)	420	115							-			
3008	Jalón / Campiel	444	116	73	0.49	Мо				4.94	В	Mo	Мо

5.6.1.1 Determinación del estado ecológico con macroinvertebrados (IBMWP)

Para la determinación o evaluación del estado ecológico mediante el uso de macroinvertebrados bentónicos se utilizó el índice IBMWP. Los límites utilizados para el diagnóstico según este índice son los publicados en el Anexo III de la IPH, en los tipos de masas de agua en los que no se dispone de Información sobre las condiciones de referencia se utilizaron los límites de la tipología 112, de forma provisional, de acuerdo a las indicaciones del Informe CEMAS 2009 (CHE, 2010). Ver **Tablas 67 y 68**.

TABLA 67

Rangos de Estado Ecológico del índice IBMWP de acuerdo al Anexo III de la Orden ARM/2656/2008.

Estado	Clase	109	111	112	115*	116*	117*	126	127
Muy Bueno		>124	>140	>133	>133	>133	>133	>127	>135
Bueno	II	95-124	107-140	101-133	101-133	101-133	101-133	95-127	103-135
Moderado	Ш	63-94	71-106	68-100	68-100	68-100	68-100	63-94	68-102
Deficiente	IV	32-62	36-70	33-67	33-67	33-67	33-67	33-62	35-67
Malo	V	<32	<36	<33	<33	<33	<33	<33	<35

^{*}En los tipos 115, 116 y 117 no se han establecido condiciones de referencia. A nivel de aproximación y de forma provisional, se utilizan para el diagnóstico del estado ecológico las mismas condiciones que las asignadas para el tipo 112.

TABLA 68

Rangos de Estado Ecológico del índice IBMWP, en forma de EQR, de acuerdo al Anexo III de la Orden ARM/2656/2008.

TIPOS	Denominación	Condición de referencia	EQR Límite MB-B	EQR Límite B-Mo	EQR Límite Mo-D	EQR Límite D-M
109	Ríos mineralizados de baja montaña mediterránea	160	0,78	0,59	0,39	0,20
111	Ríos de montaña mediterránea silícea	180	0,78	0,59	0,39	0,20
112	Ríos de montaña mediterránea calcárea	150	0,89	0,67	0,45	0,22
115*	Ejes mediterráneo-continentales poco mineralizados	150	0,89	0,67	0,45	0,22
116*	Ejes mediterráneo-continentales mineralizados	150	0,89	0,67	0,45	0,22
117*	Grandes ejes en ambiente mediterráneo	150	0,89	0,67	0,45	0,22
126	Ríos de montaña húmeda calcárea	161	0,79	0,59	0,39	0,20
127	Ríos de Alta Montaña	158	0,86	0,65	0,43	0,22

^{*}En los tipos 115, 116 y 117 no se han establecido condiciones de referencia. A nivel de aproximación y de forma provisional, se utilizan para el diagnóstico del estado ecológico las mismas condiciones que las asignadas para el tipo 112.

El 94 % de las estaciones alcanzaron el *muy buen* estado ecológico, el 3 % alcanzaron el *buen* estado. En total el 97 % de las estaciones cumplieron con el objetivo de la DMA del *"buen estado ecológico"*. Por el contrario un 3 % de estaciones alcanzaron un estado *moderado*. Ver **Figura 153**.

251

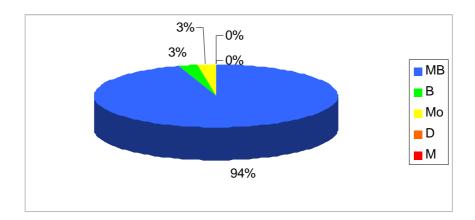
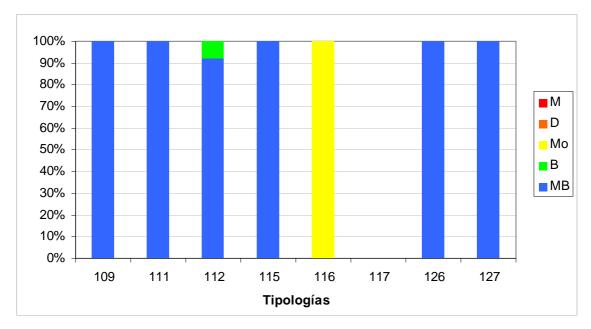



Figura 153. Clases de estado ecológico para las métricas de macroinvertebrados

Si se analizan los resultados que se obtuvieron para cada tipología, **Figura 154**, se observa que todas las estaciones cumplieron con los objetivos de la DMA, con la excepción de la estación del tipo 116, que se considera de referencia de manera provisional, que alcanzó un estado *moderado*.

Figura 154. Distribución de las clases de estado ecológico para los diferentes tipos de ríos estudiados según el índice de macroinvertebrados IBMWP. M=*malo*; D=*deficiente*; Mo=*moderado*; B=*bueno*;MB=*muy bueno*.

En la **Tabla 69**, se resumen los datos de estado ecológico obtenidos del índice IBMWP para cada una de las tipologías.

TABLA 69

Número de estaciones para cada clase de calidad en los diferentes tipos de ríos muestreados en 2010.

SD sin datos

TIPOS	Denominación	MB	В	Мо	D	M	SD
109	Ríos mineralizados de baja montaña mediterránea	2	0	0	0	0	0
111	Ríos de montaña mediterránea silícea	5	0	0	0	0	0
112	Ríos de montaña mediterránea calcárea	12	1	0	0	0	0
115	Ejes mediterráneo-continentales poco mineralizados	1	0	0	0	0	1
116	Ejes mediterráneo-continentales mineralizados	0	0	1	0		0
117	Grandes ejes en ambiente mediterráneo	0	0	0	0	0	1
126	Ríos de montaña húmeda calcárea	14	0	0	0	0	0
127	Ríos de Alta Montaña	4	0	0	0	0	0
	Total	38	1	1	0	0	2

En la **Figura 155** de la página siguiente, se representa la distribución espacial de las clases de estado ecológico que se obtuvieron de la aplicación del índice de macroinvertebrados IBMWP. Se puede observar que el estado muy bueno se encontraba distribuido ampliamente a lo largo de las cabeceras de toda de la Cuenca.

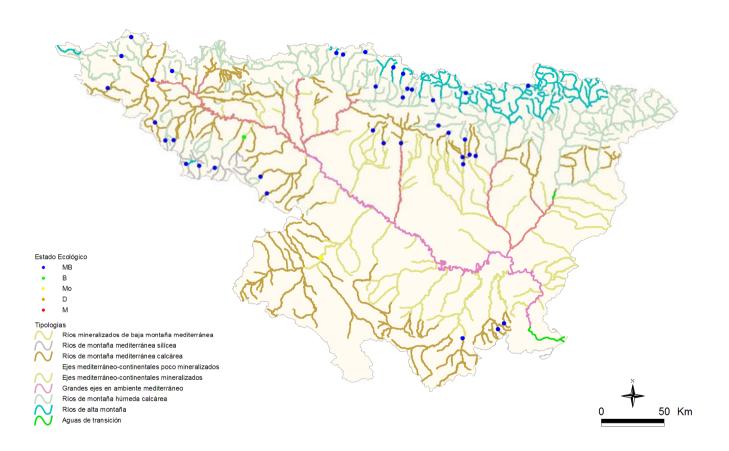


Figura 155. Distribución de las clases de estado ecológico para los diferentes tipos de ríos estudiados según el índice de macroinvertebrados IBMWP

5.6.1.2 Determinación del estado ecológico con macrófitos (IVAM)

Para la determinación o evaluación del estado ecológico mediante el uso de macrófitos (vegetación acuática macroscópica) se utilizó el índice *IVAM*, propuesto y testado por Moreno et al. (2005; 2006) en ríos de la comunidad de Castilla-La Mancha. Para el establecimiento de los límites de clases de calidad se optó por utilizar los límites propuestos por Moreno (Tabla 5 en Moreno et al. 2006, Pág. 830) para el conjunto de ríos de Castilla-La Mancha. De esta forma, los límites del IVAM quedaron como se expone en la **Tabla 70**.

TABLA 70
LIMITES DE CLASES DE CALIDAD PARA EL IVAM

Estado	Clase	Valor índice IVAM
Muy Bueno	I	> 5,7
Bueno	II	5,7-4,5
Moderado	III	4,4-3,2
Deficiente	IV	3,1-2,0
Malo	V	< 2

El indicador IVAM se aplicó a un total de 39 estaciones de muestreo. Los resultados (nº de géneros, valor del IVAM y estado biológico resultante), se muestran en el **Cuadro 6**.

El análisis global de los resultados de la evaluación del estado ecológico mediante el índice IVAM ofrece los siguientes resultados, ilustrados en la **Figura 156**. Un 3 % de las muestras mostraron un estado por debajo de *bueno*. Las clases mayoritarias fueron *muy bueno*, con un 66 % de las muestras, y *bueno*, con un 31%.

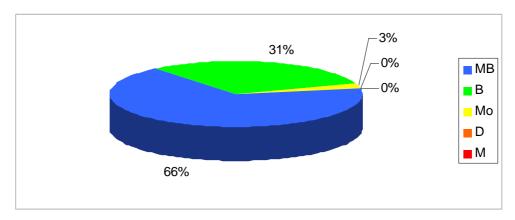
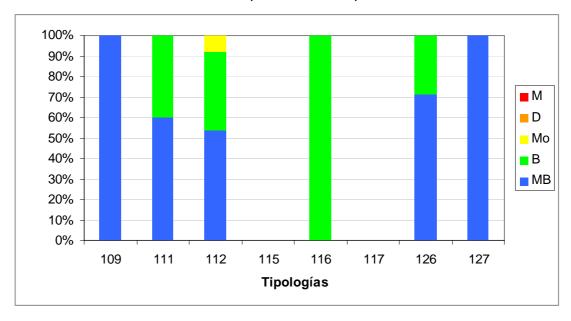



Figura 156. Distribución de las clases de calidad para el indicador de macrófitos IVAM

En cuanto a la distribución de las clases de calidad por tipologías de ríos (**Figura 157**), el IVAM arrojó los siguientes resultados:

- En todos los tipos las clases *muy bueno y bueno* fueron mayoritarias.
- El estado moderado sólo estuvo presente en el tipo 112.

Figura 157. Distribución de las clases de calidad para los diferentes tipos de ríos estudiados según el indicador biológico de macrófitos (índice IVAM)

En la **Tabla 71** se presentan el número de estaciones para cada clase de calidad de las diferentes tipologías.

TABLA 71

Número de estaciones para cada clase de calidad en los diferentes tipos de ríos muestreados en 2010. SD sin datos

TIPOS	Denominación	MB	В	Мо	D	М	SD
109	Ríos mineralizados de baja montaña mediterránea	2	0	0	0	0	0
111	Ríos de montaña mediterránea silícea	3	2	0	0	0	0
112	Ríos de montaña mediterránea calcárea	7	5	1	0	0	0
115	Ejes mediterráneo-continentales poco mineralizados	0	0	0	0	0	2
116	Ejes mediterráneo-continentales mineralizados	0	1	0	0	0	0
117	Grandes ejes en ambiente mediterráneo	0	0	0	0	0	1
126	Ríos de montaña húmeda calcárea	10	4	0	0	0	0
127	Ríos de Alta Montaña	4	0	0	0	0	0
	Total	26	12	1	0	0	3

Si se representan los datos en un mapa, **Figura 158**, se puede observar que los estados ecológicos *muy bueno y bueno* fueron mayoritarios en los tramos de cabecera de zonas montañosas.

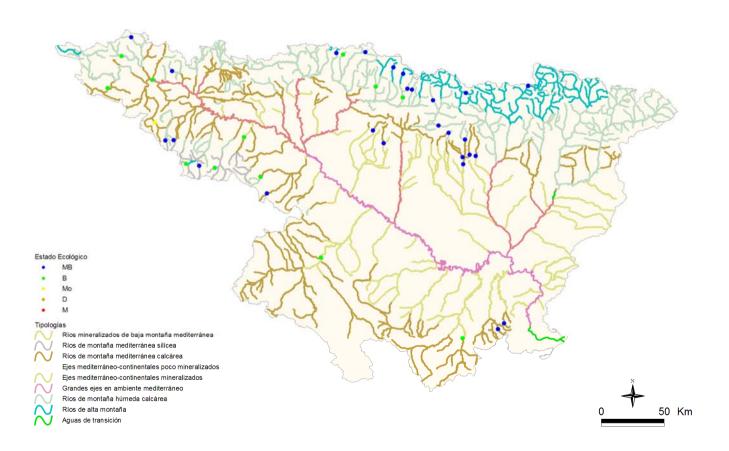


Figura 158. Distribución de las clases de calidad según el indicador biológico de macrófitos (índice IVAM)

5.6.1.3 Determinación del estado ecológico con fitobentos (IPS)

Para la determinación o evaluación del estado ecológico mediante el uso de las algas bentónicas o fitobentos (organismos autótrofos asociados a los fondos de los ecosistemas acuáticos, más concretamente, microalgas bentónicas), se utilizó el índice de diatomeas *IPS* (índice de poluosensibilidad específica, CEMAGREF 1982).

Los límites utilizados para el diagnóstico según este índice son los publicados en el Anexo III de la IPH, en los tipos de masas de agua en los que no se dispone de Información sobre las condiciones de referencia se utilizaron los límites de la tipología 112, de forma provisional, de acuerdo las indicaciones del Informe CEMAS 2009 (CHE, 2010). **Ver Tablas 72 y 73.**

TABLA 72

Rangos de Estado Ecológico del índice IPS de acuerdo al Anexo III de la Orden ARM/2656/2008.

Estado	Clase	109	111	112	115*	116*	117*	126	127
Muy Bueno	I	>16,8	>16,2	>16	>15,1	>15,1	>15,1	>16,3	>17,4
Bueno	II	16,8-12,6	16,2-12,2	16-11,9	16-11,9	16-11,9	16-11,9	16,3-12,2	17,3-13,1
Moderado	Ш	12,5-8,4	12,1-8,1	11,8-8	11,8-8	11,8-8	11,8-8	12,1-8,1	13,0-8,8
Deficiente	IV	8,3-4,2	8-4,1	7,9-3,9	7,9-3,9	7,9-3,9	7,9-3,9	8,0-4,1	8,7-4,3
Malo	V	<4,2	<4,1	<3,9	<3,9	<3,9	<3,9	<4,1	<4,3

^{*} En los tipos 115, 116 y 117 no se han establecido condiciones de referencia. A nivel de aproximación y de forma provisional, se utilizan para el diagnóstico del estado ecológico las mismas condiciones que las asignadas para el tipo 112.

TABLA 73

Rangos de Estado Ecológico del índice IPS, en forma de EQR, de acuerdo al Anexo III de la Orden ARM/2656/2008.

TIPOS	Denominación	Condición de referencia	EQR Límite MB-B	EQR Límite B-Mo	EQR Límite Mo-D	EQR Límite D-M
109	Ríos mineralizados de baja montaña mediterránea	17,5	0,96	0,72	0,48	0,24
111	Ríos de montaña mediterránea silícea	16,5	0,98	0,74	0,49	0,25
112	Ríos de montaña mediterránea calcárea	17	0,94	0,70	0,47	0,23
115*	Ejes mediterráneo-continentales poco mineralizados	17	0,94	0,70	0,47	0,23
116*	Ejes mediterráneo-continentales mineralizados	17	0,94	0,70	0,47	0,23
117*	Grandes ejes en ambiente mediterráneo	17	0,94	0,70	0,47	0,23
126	Ríos de montaña húmeda calcárea	17,7	0,92	0,69	0,46	0,23
127	Ríos de Alta Montaña	18,7	0,93	0,70	0,47	0,23

^{*} En los tipos 115, 116 y 117 no se han establecido condiciones de referencia. A nivel de aproximación y de forma provisional, se utilizan para el diagnóstico del estado ecológico las mismas condiciones que las asignadas para el tipo 112.

El indicador IPS se aplicó a un total de 37 estaciones de muestreo. Los resultados se muestran en el **Cuadro 6**.

El análisis de los resultados de la evaluación del estado ecológico mediante el índice IPS ofreció los siguientes resultados, ilustrados en la **Figura 159**. Las clases mayoritarias fueron *muy bueno*, con un 97 % de las muestras, y *bueno*, con un 3%.

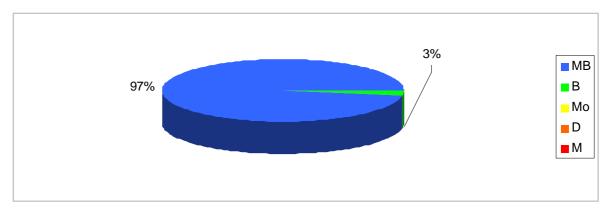
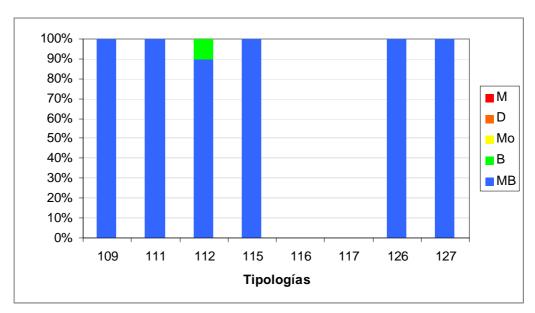



Figura 159. Distribución de las clases de calidad para el indicador de fitobentos IPS

En cuanto a la distribución de las clases de calidad por tipologías de ríos (**Figura 160**), el IPS arrojó los siguientes resultados:

- En todos los tipos la clase *muy bueno* fue mayoritaria.
- La clase bueno sólo estuvo presente en el tipo 112.

Figura 160. Distribución de las clases de calidad para los diferentes tipos de ríos estudiados según el indicador biológico de fitobentos (índice IPS)

259

En la **Tabla 74**, se resumen para cada tipología el número de estaciones para cada una de las clases de calidad.

TABLA 74

Número de estaciones para cada clase de calidad en los diferentes tipos de ríos muestreados en 2010. SD sin datos

TIPOS	Denominación	MB	В	Мо	D	M	SD
109	Ríos mineralizados de baja montaña mediterránea	2	0	0	0	0	0
111	Ríos de montaña mediterránea silícea	5	0	0	0	0	0
112	Ríos de montaña mediterránea calcárea	9	1	0	0	0	3
115	Ejes mediterráneo-continentales poco mineralizados	1	0	0	0	0	1
116	Ejes mediterráneo-continentales mineralizados	0	0	0	0	0	1
117	Grandes ejes en ambiente mediterráneo	0	0	0	0	0	1
126	Ríos de montaña húmeda calcárea	14	0	0	0	0	0
127	Ríos de Alta Montaña	4	0	0	0	0	0
	Total	35	1	0	0	0	6

Si se representan los datos de estado ecológico que se obtuvieron de la aplicación del índice de diatomeas IPS en un mapa, **Figura 161**, se puede observar que el estado *muy bueno* estuvo ampliamente distribuido.

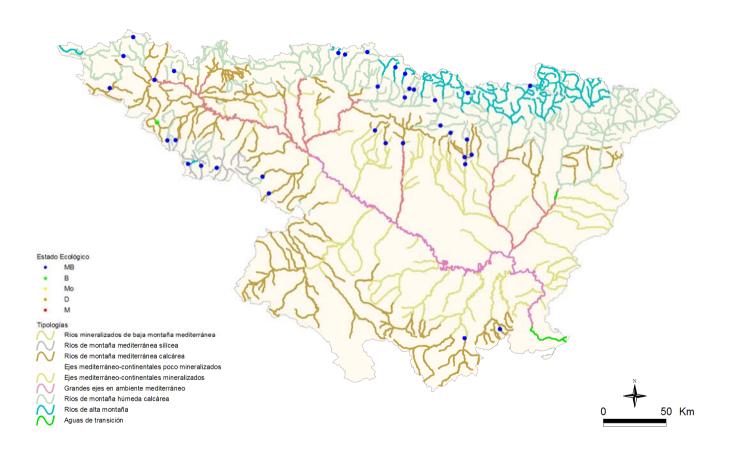


Figura 161. Distribución de las clases de calidad según el indicador biológico de fitobentos (índice IPS)

5.6.2 Estado Ecológico según los Indicadores Biológicos

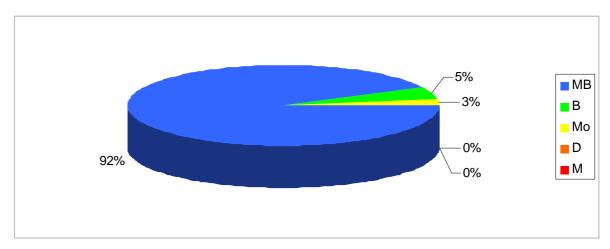
Por un lado y siguiendo la metodología más restrictiva, se ha escogido como indicador, de entre todos los indicadores biológicos, aquel cuyo resultado fuera la estima menos favorable en cada ocasión, tal y como en principio establecen las directrices de la DMA, según el principio "uno fuera, todo fuera". Hay que indicar que se han tenido en cuenta aquellas estaciones de las que, como mínimo, se disponía de valores de uno de los indicadores. A nivel de aplicación práctica, el procedimiento es el siguiente:

Condiciones biológicas

- 1. Clasificación de cada punto de muestreo en 5 categorías para los índices IPS e IBMWP, utilizando los límites del Anexo III de la IPH y de la tipología 112 para aquellas tipologías de las que no se disponen de condiciones de referencia, 115, 116 y 117, de acuerdo a lo establecido en el Informe CEMAS 2008 (CHE, 2009). También se ha tenido en cuenta en otro apartado el índice IVAM, debido a que de momento no se han establecido condiciones de referencia para los distintos tipos.
- 2. Asignación a cada punto de muestreo de la peor categoría entre las diagnosticadas según los índices individuales.
- 3. Asignación a cada masa de agua con resultados de la peor catgoría obtenida entre los puntos de muestreo que representan su calidad.
- 4. Las 5 categorías empleadas para la clasificación han sido:
 - a. Muy bueno
 - b. Bueno
 - c. Moderado
 - d. Deficiente
 - e. Malo

A. Estado Ecológico según los indicadores IBMWP e IPS

A continuación se expone el estado ecológico de las masas según los indicadores de macroinvertebrados (IBMWP) y diatomeas (IPS), sin considerar el de macrófitos (IVAM).


262

Cuadro 6.

En la **Figura 162**, se pueden observar los resultados de estado ecológico que se obtuvieron según los indicadores biológicos IBMWP e IPS. En el cálculo también se tuvieron en cuenta aquellas estaciones de las que se disponía un solo dato, bien fuera de diatomeas o de macroinvertebrados.

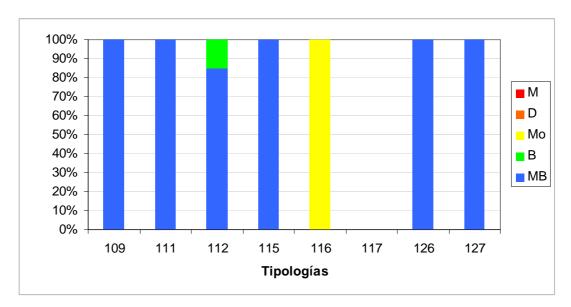

Teniendo en cuenta lo comentado anteriormente, se observa que en el 92 % de las estaciones se obtuvo un estado ecológico correspondiente a *muy bueno* y en el 5 % presentó un *buen* estado. En total, en el 97 % de las estaciones para las que se obtuvieron datos de los dos indicadores se cumplieron los objetivos establecidos en la DMA.

Figura 162. Estado ecológico de las estaciones muestreadas en 2010 según los indicadores biológicos IBMWP e IPS

Se compararon los resultados obtenidos mediante contrastes no paramétricos de Kruskal-Wallis para testar diferencias entre los distintos tipos de ríos. Se obtuvieron diferencias significativas (p< 0,05) entre los tipos de ríos. Si se analizan los datos para las diferentes tipologías, **Figura 163**, se observa que en todos los tipos el estado mayoritario fue el *muy bueno*, con la excepción del tipo 116 en el que la única estación obtuvo un estado *moderado*.

Figura 163. Estado ecológico de las estaciones muestreadas en 2010 según los indicadores biológicos IBMWP e IPS para cada tipología

En la siguiente tabla se presentan las estaciones para cada clase de calidad en cada una de las tipologías.

TABLA 75

Número de estaciones para cada clase de calidad en los diferentes tipos de ríos muestreados en 2010. SD sin datos

TIPOS	Denominación		В	Мо	D	M	SD
109	Ríos mineralizados de baja montaña mediterránea		0	0	0	0	0
111	Ríos de montaña mediterránea silícea		0	0	0	0	0
112	Ríos de montaña mediterránea calcárea	11	2	0	0	0	0
115	Ejes mediterráneo-continentales poco mineralizados	1	0	0	0	0	1
116	Ejes mediterráneo-continentales mineralizados	0	0	1	0	0	0
117	Grandes ejes en ambiente mediterráneo	0	0	0	0	0	1
126	Ríos de montaña húmeda calcárea	14	0	0	0	0	0
127	Ríos de Alta Montaña		0	0	0	0	0
	Total		2	1	0	0	2

En la **Figura 164** se representan en un mapa los resultados obtenidos, se observa nuevamente que el estado *muy bueno* prevaleció en las estaciones de referencia de zonas de cabecera y el *bueno* en algunas estaciones de montaña y tramos medios. La estación que obtuvo un estado *moderado*, se encontraba en un tramo medio y se considera de referencia provisionalmente, aunque a la vista de los resultados, es probable que pase a formar parte de la red de control operativo.

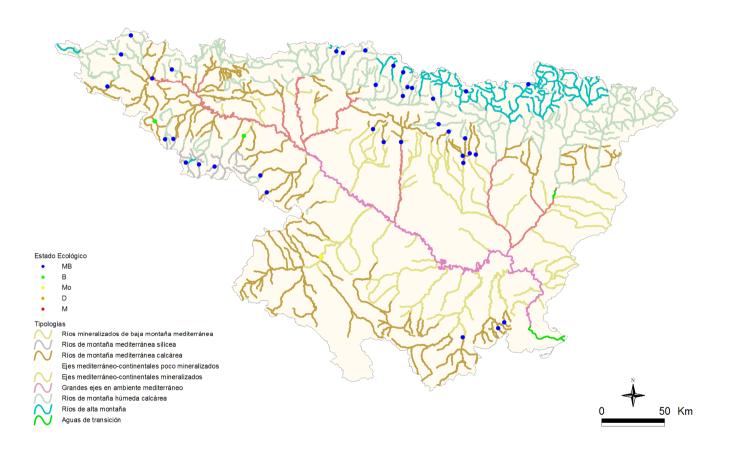
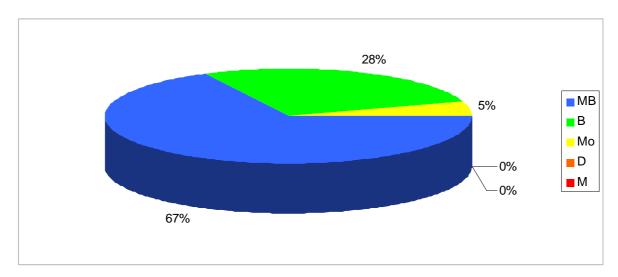


Figura 164. Distribución del estado ecológico de las estaciones muestreadas en 2010 según los indicadores biológicos IBMWP e IPS



B. Estado Ecológico según los indicadores IBMWP, IPS e IVAM

A continuación se expone el estado ecológico de las masas según los indicadores de macroinvertebrados (IBMWP), diatomeas (IPS) y macrófitos (IVAM). **Cuadro 6**.

En la **Figura 165** se resumen los datos de estado ecológico obtenidos al aplicar los tres indicadores biológicos, macroinvertebrados, diatomeas y macrófitos. Como en el apartado anterior también se ha calculado el estado ecológico en aquellas estaciones de las que se disponía datos de uno solo de los indicadores biológicos.

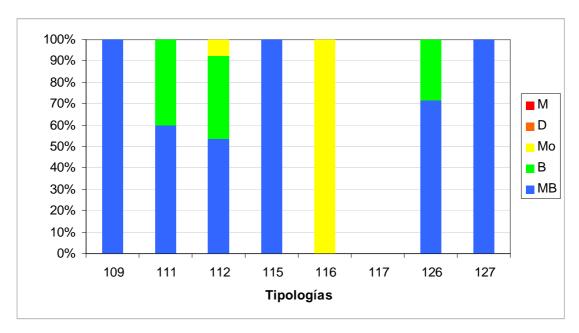

El *muy buen* estado ecológico se obtuvo en el 67 % de las estaciones, en un 28 % se alcanzó el *buen* estado y en un 5 % de las estaciones no se cumplieron los objetivos de la DMA.

Figura 165. Estado ecológico de las estaciones muestreadas en 2010 según los indicadores IBMWP, IPS e IVAM

Se compararon los resultados obtenidos mediante contrastes no paramétricos de Kruskal-Wallis para testar diferencias entre los distintos tipos de ríos. No se obtuvieron diferencias significativas (p> 0,05) entre los tipos de ríos. El estado *muy bueno* dominó en todas las tipologías, con la excepción del tipo 116. El estado *bueno* estuvo presente en los tipos 111, 112 y 126. Los peores resultados se obtuvieron en el tipo 116 (*Ejes mediterráneo-continentales mineralizados*), **Figura 166**.

Figura 166. Estado ecológico de las estaciones muestreadas en 2010 según los indicadores IBMWP, IPS e IVAM para cada tipología

En la tabla inferior se resumen los datos obtenidos para cada clase de calidad en las diferentes tipologías presentes en la cuenca.

TABLA 76

Número de estaciones para cada clase de calidad en los diferentes tipos de ríos muestreados en 2010. SD sin datos

TIPOS	Denominación		В	Мо	D	М	SD
109	Ríos mineralizados de baja montaña mediterránea	2	0	0	0	0	0
111	Ríos de montaña mediterránea silícea		2	0	0	0	0
112	Ríos de montaña mediterránea calcárea	7	5	1	0	0	0
115	Ejes mediterráneo-continentales poco mineralizados	1	0	0	0	0	1
116	Ejes mediterráneo-continentales mineralizados	0	0	1	0	0	0
117	Grandes ejes en ambiente mediterráneo	0	0	0	0	0	1
126	Ríos de montaña húmeda calcárea	10	4	0	0	0	0
127	Ríos de Alta Montaña		0	0	0	0	0
	Total	27	11	2	0	0	2

En el mapa de la siguiente página (**Figura 167**) se representan espacialmente los resultados que se obtuvieron. Se puede observar que el estado *muy bueno* fue mayoritario en las zonas de cabecera de montaña y el estado *moderado* en tramos medios de los ríos.

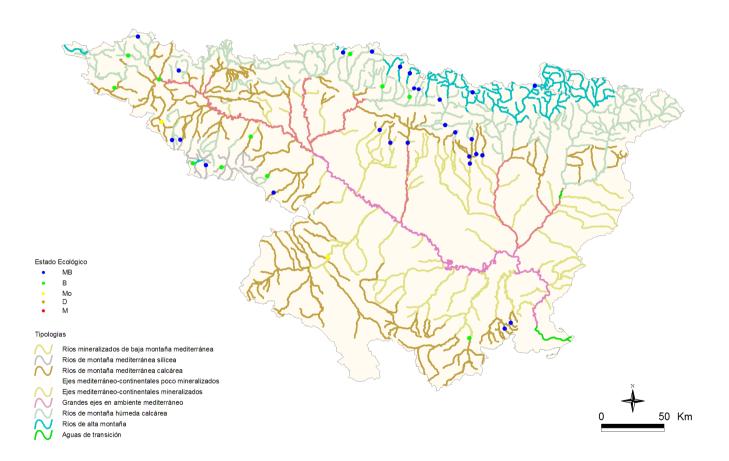


Figura 167. Distribución espacial del estado ecológico de las estaciones muestreadas en 2010 según los indicadores IBMWP, IPS e IVAM

5.6.3 Comparación del estado ecológico según los indicadores biológicos aplicados

A continuación se realiza una breve comparación de los resultados obtenidos al introducir el índice de macrófitos IVAM en la estima del estado ecológico de las estaciones objeto de estudio.

En las **Figuras 168** y **169**, se muestran los resultados de los cambios de clase de estado ecológico al tener en cuenta el IVAM junto al IPS e IBMWP. Se observó que un 72 % de las estaciones no varió su estado ecológico, un 25 % descendió de estado *Muy bueno* a *Bueno*, seguido de un 3 % de las estaciones que pasaron de *Bueno* a *Moderado*. En total un 28 % de las estaciones variaron su estado ecológico.

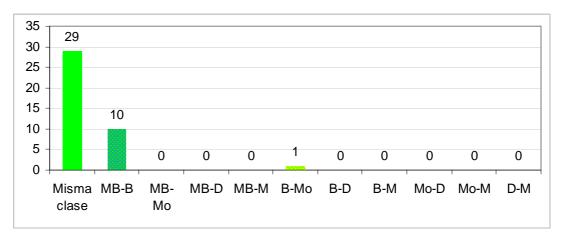
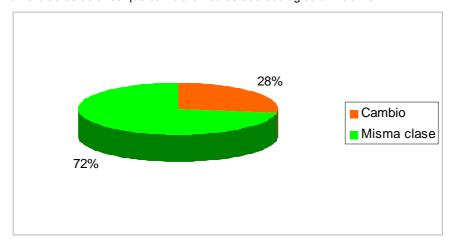



Figura 168. Número de estaciones que cambiaron su estado ecológico al incluir el IVAM

Figura 169. Variaciones de las clases de estado ecológico de las estaciones muestreadas en 2010 al incluir el IVAM en la estima del estado ecológico

A nivel global, los resultados obtenidos de la estima del estado ecológico, sin IVAM y con IVAM, se compararon mediante el test de Wilcoxon, para comprobar si las diferencias

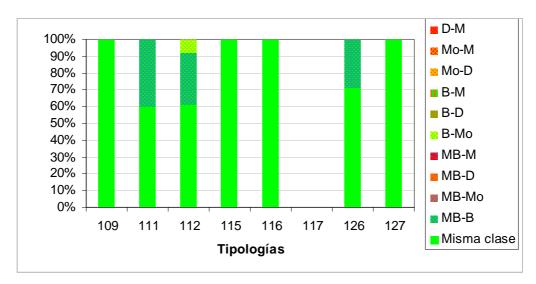

detectadas eran significativas. Se obtuvo que existían diferencias entre los resultados obtenidos (p<0,05). Posteriormente se repitió el test para cada tipología, los resultados que se obtuvieron se muestran en la **Tabla 77**.

TABLA 77

RESULTADOS DEL TEST DE WILCOXON
En negrita, las diferencias significativas, p<0,05

Tipo	Denominación	N	Z	р
109	Ríos mineralizados de baja montaña mediterránea	2		
111	Ríos de montaña mediterránea silícea			
112	12 Ríos de montaña mediterránea calcárea		2,02	0,043
115	Ejes mediterráneo-continentales poco mineralizados			
116	Ejes mediterráneo-continentales mineralizados			
117	Grandes ejes en ambiente mediterráneo			
126	Ríos de montaña húmeda calcárea	14	1,82	0,067
127	Ríos de Alta Montaña	4		

En la **Figura 170** se muestran los resultados que se obtuvieron para cada tipología, como se puede observar que en las tipologías 111 (*Ríos de montaña mediterránea silícea*), 112 (*Ríos de montaña mediterránea calcárea*) y 126 (*Ríos de montaña húmeda calcárea*) se obtuvieron los mayores cambios de estado ecológico y, cuando en estos se dio, la variación fue de *Muy bueno* a *Bueno*.

Figura 170. Variaciones de las clases de estado ecológico de las estaciones muestreadas en 2010 al incluir el IVAM en la estima del estado ecológico, por tipologías

5.6.4 Indicadores de calidad hidromorfológicos

En los apartados siguientes se expone la metodología utilizada en el establecimiento de rangos de calidad para la evaluación del estado ecológico mediante estos dos indicadores.

Para establecer los límites de corte de las clases de estado ecológico se siguieron las indicaciones de la instrucción de planificación hidrológica para cada tipo de río, excepto en los tipos 115, 116 y 117 de los que no se dispone condiciones de referencia. En estos casos se siguieron las indicaciones del informe CEMAS de 2009 (CHE, 2010) y se les aplicaron los límites establecidos para el tipo 112. **Tablas 78 y 79**.

TABLA 78

Rangos de Estado Ecológico de los índices IHF y QBR de acuerdo al Anexo III de la Orden ARM/2656/2008

TIPOS	Denominación	IHF MB/B	QBR MB/B			
109	Ríos mineralizados de baja montaña mediterránea	73,15	71,4			
111	Ríos de montaña mediterránea silícea	66,24	77,87			
112	Ríos de montaña mediterránea calcárea	59,94	69,7			
115*	Ejes mediterráneo-continentales poco mineralizados					
116*	Ejes mediterráneo-continentales mineralizados					
117*	Grandes ejes en ambiente mediterráneo					
126	Ríos de montaña húmeda calcárea	57,15	65,25			
127	Ríos de Alta Montaña	68,4	88,36			

^{*} En los tipos 115, 116 y 117 no se han establecido condiciones de referencia. A nivel de aproximación y de forma provisional, se utilizan para el diagnóstico del estado ecológico las mismas condiciones que las asignadas para el tipo 112.

TABLA 79

Rangos de Estado Ecológico de los índices IHF y QBR, en forma de EQR, de acuerdo al Anexo III de la Orden ARM/2656/2008

'		IHF		QBR			
TIPOS	Denominación	Condición de referencia	EQR Límite MB-B	Condición de referencia	EQR Límite MB-B		
109	Ríos mineralizados de baja montaña mediterránea	77	0,95	85	0,84		
111	Ríos de montaña mediterránea silícea	72	0,92	87,5	0,89		
112	Ríos de montaña mediterránea calcárea	74	0,89	85	0,81		
115	Ejes mediterráneo-continentales poco mineralizados	74	0,89	85	0,81		
116	Ejes mediterráneo-continentales mineralizados	74	0,89	85	0,81		
117	Grandes ejes en ambiente mediterráneo	74	0,89	85	0,81		
126	Ríos de montaña húmeda calcárea	63,5	0,90	72,5	0,90		
127	Ríos de Alta Montaña	72	0,95	94	0,94		

^{*} En los tipos 115, 116 y 117 no se han establecido condiciones de referencia. A nivel de aproximación y de forma provisional, se utilizan para el diagnóstico del estado ecológico las mismas condiciones que las asignadas para el tipo 112.

CUADRO 7

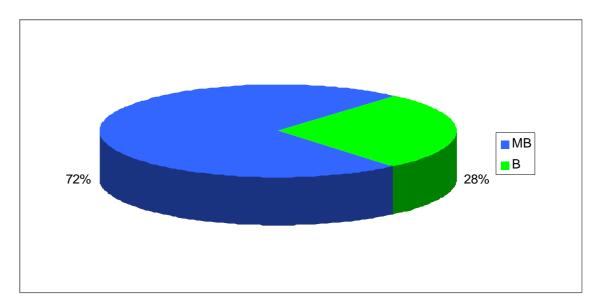
ESTADO HIDROMORFOLÓGICO

MB=muy bueno; B=bueno;

EE-IHF: estado según el índice IHF. EE-QBR: estado según el índice QBR.

EE-HMF: estado hidromorfológico final (MB: *muy bueno*; B: Inferior a *muy bueno*). En blanco estaciones no muestreadas

CEMAS	Toponimia	IdMasa	Tipología	IHF	EQR IHF	EE- IHF	QBR	EQR QBR	EE- QBR	EE- HMF
0011	Ebro / Zaragoza - Monzalbarba	452	117							
0166	Jerea / Palazuelos de Cuesta Urria	234	112	66	0.89	MB	95	1.12	MB	MB
0197	Leza / Ribafrecha	276	112				100	1.18	MB	MB
0539	Aurin / Isín	568	126	61	0.96	MB	100	1.38	MB	MB
0623	Algas / Mas de Bañetes	398	112	54	0.73	В	100	1.18	MB	В
0808	Gállego / Santa Eulalia	425	115	60	0.81	MB	100	1.18	MB	MB
0816	Escá / Burgui	526	126	64	1.01	MB	100	1.38	MB	MB
1004	Nela / Puentedey	474	126	78	1.23	MB	100	1.38	MB	MB
1006	Trueba / El Vado	477	126	57	0.9	В	100	1.38	MB	В
1065	Urrobi / Puente carretera Garralda	533	126	68	1.07	MB	100	1.38	MB	MB
1083	Arba de Luesia / Luesia	100	109	67	0.87	В	100	1.18	MB	В
1141	Alcanadre / Puente a las Cellas	157	109	72	0.94	В	100	1.18	MB	В
1169	Oca / Villalmondar	221	112	70	0.95	MB	75	0.88	MB	MB
1173	Tirón / Aguas arriba Fresneda de la Sierra	179	111	67	0.93	МВ	100	1.14	MB	MB
1178	Najerilla / Villavelayo (aguas arriba)	183	111	68	0.94	MB	100	1.14	MB	MB
1191	Linares / San Pedro Manrique	296	112	59	8.0	В	50	0.59	В	В
1193	Alhama / Magaña	295	112	66	0.89	MB	100	1.18	MB	MB
1240	Matarraña / Beceite, Parrizal	383	112	63	0.85	MB	100	1.18	MB	MB



CEMAS	Toponimia	IdMasa	Tipología	IHF	EQR IHF	EE- IHF	QBR	EQR QBR	EE- QBR	EE- HMF
1270	Ésera / Plan de l'Hospital de Benasque	764	127	60	0.83	В				В
1279	Arba de Biel / El Frago	304	112	64	0.86	MB	100	1.18	MB	MB
1282	Vero / Camping de Alquézar	375	112	69	0.93	MB	100	1.18	MB	MB
1380	Bergantes / Mare Deu de la Balma	356	112	67	0.91	MB	100	1.18	MB	MB
1387	Urbión / Santa Cruz del Valle	180	111	72	1	MB	80	0.91	MB	MB
1393	Erro / Sorogain	535	126	73	1.15	MB	100	1.38	MB	MB
1398	Guatizalema / Nocito	686	126	83	1.31	MB	85	1.17	MB	MB
1446	Irati / Cola Embalse de Irabia	531	126	63	0.99	MB	100	1.38	MB	MB
1448	Veral / Zuriza	694	127	59	0.82	В				В
2001	Urbión / Viniegra de Abajo	194	111	73	1.01	MB	100	1.14	MB	MB
2002	Mayor / Aguas Abajo Villoslada de Cameros	197	111	78	1.08	MB	100	1.14	МВ	MB
2003	Rudrón / Tablada de Rudrón	217	112	78	1.05	MB	100	1.18	MB	MB
2005	Isuala / Alberuela de la Liena	377	112	76	1.03	MB	100	1.18	MB	MB
2007	Alcanadre / Casbas	381	112	71	0.96	MB	100	1.18	MB	MB
2011	Omecillo / Corro	481	126	66	1.04	MB	100	1.38	MB	MB
2012	Estarrón / Aísa	514	126	57	0.9	В	100	1.38	MB	В
2013	Osia / Jasa	517	126	58	0.91	MB	100	1.38	MB	MB
2014	Guarga / Ordovés	574	126	74	1.17	MB	100	1.38	MB	MB
2023	Mascún / Rodellar	684	126	67	1.06	MB	100	1.38	MB	MB
2024	Aragón Subordán / Embún	518	126	57	0.9	В	100	1.38	MB	В
2027	Arazas / Torla (pradera Ordesa)	785	127	57	0.79	В	100	1.06	MB	В
2029	Aragón Subordán / Hecho (Selva de Oza)	693	127	61	0.85	В				В
3007	Aragón / Gallipienzo (aguas abajo)	420	115	66	0.89	MB				MB
3008	Jalón / Campiel	444	116	73	0.99	MB	80	0.94	MB	MB

5.6.4.1 Índice de hábitat fluvial (IHF)

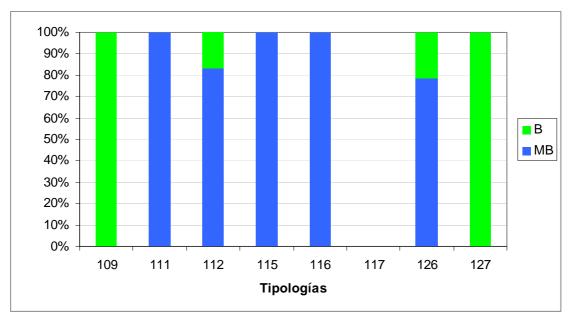

En general, en el 28 % de las estaciones se obtuvieron valores que no permitieron alcanzar el *muy bue*n estado, (**Figura 171**). En el 72 % de las estaciones se alcanzaron valores que permitieron obtener un *muy buen estado* hidromorfológico según este índice.

Figura 171. Distribución de frecuencias de las clases de calidad del IHF (índice de hábitat fluvial) para la campaña de 2010. MB=*muy bueno*; B: *bueno*

Si se analizan los datos para las distintas tipologías se observa que el mayor número de estaciones que alcanzaron el *muy buen* estado se encontraron en los tipos 111, 112, 115, 116 y 126. En el resto de tipologías el estado que dominó fue el *bueno*, **Figura 172.**

Figura 172. Distribución de frecuencias de las clases de calidad del IHF (índice de hábitat fluvial) para la campaña de 2010.

Llama la atención el bajo número de estaciones de los tipos 109 (*ríos mineralizados de baja montaña mediterránea*) y 127 (*ríos de alta montaña*) que alcanzaron el *muy buen* estado, se revisaron los datos y hubo una serie de estaciones que presentaron valores inferiores al establecido como límite *muy bueno/bueno*, pero que en realidad presentan unas características hidromorfológicas que por su naturaleza les impiden alcanzar dichos valores. Ya se comentó en el informe de 2008 (Informe Final Ríos, 2009).

En la **Figura 173** se representa espacialmente el estado ecológico a lo largo de toda la Cuenca del Ebro.

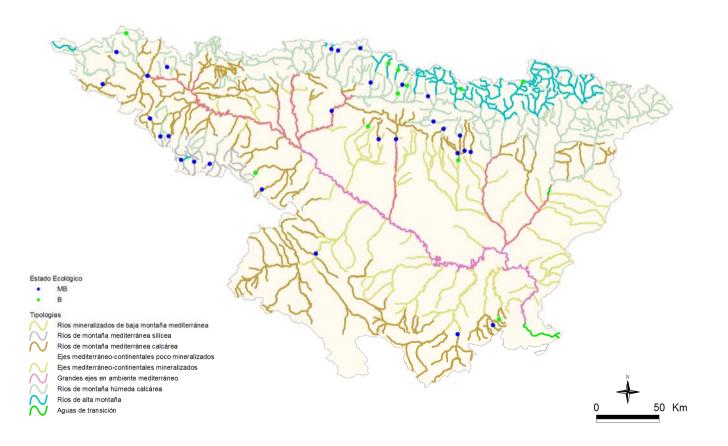


Figura 173. Distribución espacial de las clases de calidad del IHF (índice de hábitat fluvial) para la campaña de 2010

5.6.4.2 Índice de calidad del bosque de ribera

A partir de los datos del índice QBR obtenidos en cada punto de muestreo e interpretados sobre la base de las clases de calidad propuestas en la IPH (**Figura 174**), se pueden realizar los siguientes comentarios.

- Del total de muestras tomadas en el año 2010, un 97 % de las estaciones presentan un estado ecológico de la vegetación de ribera muy bueno.
- Aproximadamente un 3 % de las estaciones de muestreo presentan un estado inferior a muy bueno.

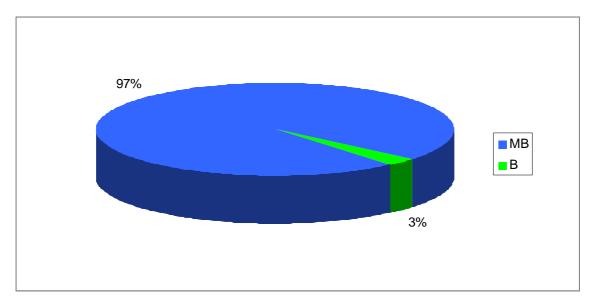


Figura 174. Distribución de frecuencias de las clases de calidad del QBR para la campaña de 2010

Entre las distintas tipologías se observó que en todos los tipos el estado *muy bueno* fue el más abundante. En el tipo 112 hubo estaciones que no alcanzaron el *muy buen* estado (**Figuras 175 y 176**).

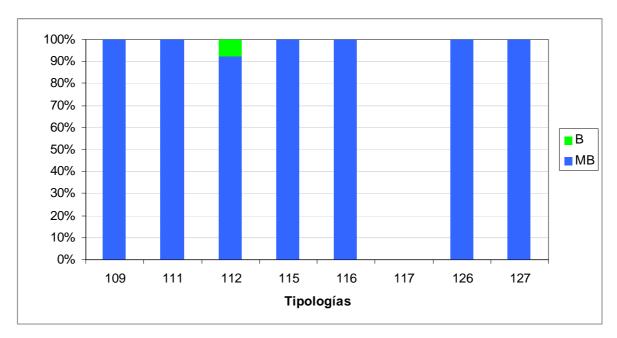
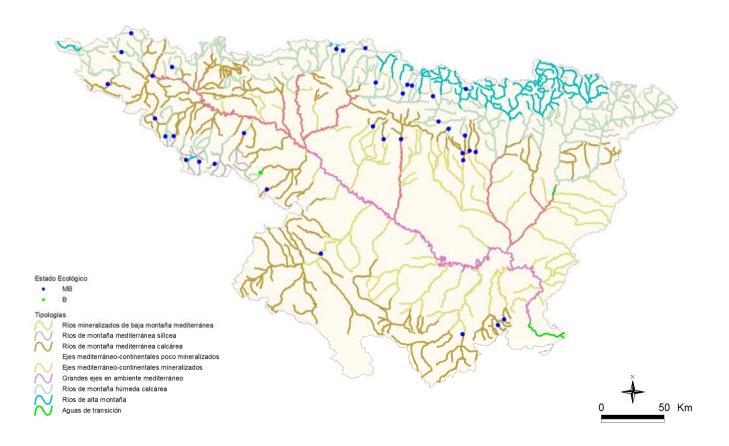
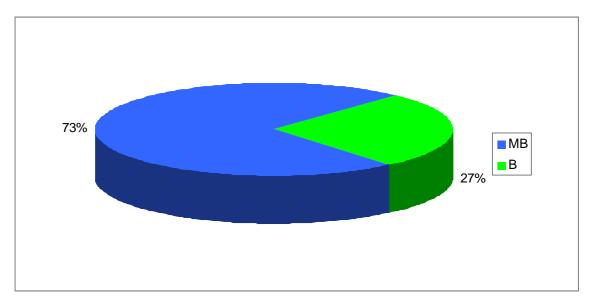


Figura 175. Clases de calidad según el QBR para cada tipología




Figura 176. Distribución espacial del QBR en la Cuenca del Ebro

5.6.4.3 Resumen de los indicadores hidromorfológicos

En el **Cuadro 7** se incluye la clasificación final de las condiciones hidromorfológicas obtenidas mediante los índices IHF y QBR en 2010. Hay que indicar que en las estaciones de alta montaña en las que no existió vegetación arbórea por causas naturales no se aplicó el índice QBR, en esas estaciones el estado hidromorfológico se calculó sólo con los valores de IHF, en las estaciones en las que la turbidez era elevada y no permitía observar el sustrato, se utilizó el QBR.

En la **Figura 177** se incluye la clasificación final de las condiciones hidromorfológicas (o índice HM) con valores de *muy buen* estado, "MB", o no alcanzando el *muy buen* estado, "B". Esta clasificación de estaciones resulta de la combinación de los índices IHF y QBR.

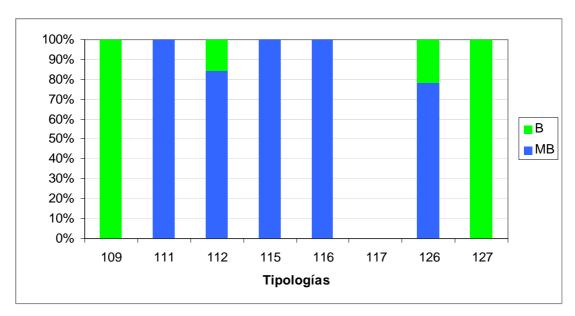


Figura 177. Estado hidromorfológico de las estaciones muestreadas en 2010.Clasificación obtenida de la combinación de los índices IHF y QBR

Como se observa, un 73 % de las estaciones presentaron unas condiciones hidromorfológicas propias del *muy buen* estado ecológico o condiciones de referencia, mientras que el 27 % de las estaciones restantes no alcanzaron estas condiciones.

Todas las tipologías obtuvieron mayor proporción de estaciones en estado *muy bueno*. Con la excepción de los tipos 109 y 127 en los que obtuvieron un *buen* estado. **Figura 178.**

Figura 178. Estado hidromorfológico para las distintas tipologías.Clasificación obtenida de la combinación de los índices IHF y QBR

En el mapa de la página siguiente se representa la distribución espacial del estado ecológico según los indicadores hidromorfológicos (**Figura 179**).

En la Tabla 80, se resumen los datos los indicadores para cada una de las tipologías.

TABLA 80

Número de estaciones para cada clase de calidad en los diferentes tipos de ríos muestreados en 2010.

		QBR		IHF		EE-HMF	
TIPOS	Denominación	MB	В	MB	В	MB	В
109	Ríos mineralizados de baja montaña mediterránea	2	0	0	2	0	2
111	Ríos de montaña mediterránea silícea	5	0	5	0	5	0
112	Ríos de montaña mediterránea calcárea	12	1	10	2	11	2
115	Ejes mediterráneo-continentales poco mineralizados	1	0	2	0	2	0
116	Ejes mediterráneo-continentales mineralizados	1	0	1	0	1	0
117	Grandes ejes en ambiente mediterráneo	0	0	0	0	0	0
126	Ríos de montaña húmeda calcárea	14	0	11	3	11	3
127	Ríos de Alta Montaña	1	0	0	4	0	4
	Total	36	1	29	11	30	11

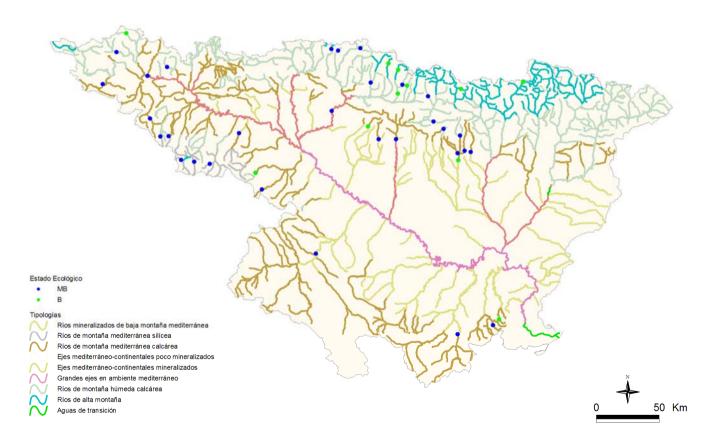


Figura 179. Distribución espacial de los resultados de estado hidromorfológico

5.6.4.4 Comparación entre Indicadores

Si analizamos las diferencias de clasificación de estado ecológico entre indicadores, en la **Figura 180** se puede observar que en un 77 % de los casos los dos indicadores clasificaron la estación en el mismo estado, del 77 %, un 56 % correspondió a *Muy bueno* y un 21 % a *Bueno*. En el 23 % restante hubo diferencias entre los indicadores, en un 2 % de las estaciones el causante del *buen* estado fue el QBR, mientras que en un 21 % lo fue el IHF.

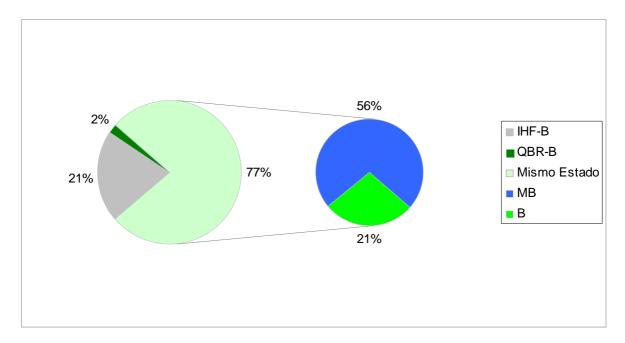


Figura 180. Indicadores limitantes de alcanzar el muy buen estado

En la **Figura 181** se muestran los resultados por tipologías. Se observó que en todos los tipos el indicador, que en mayor porcentaje, fue responsable del paso del *Muy buen* al *Buen* estado fue el IHF.

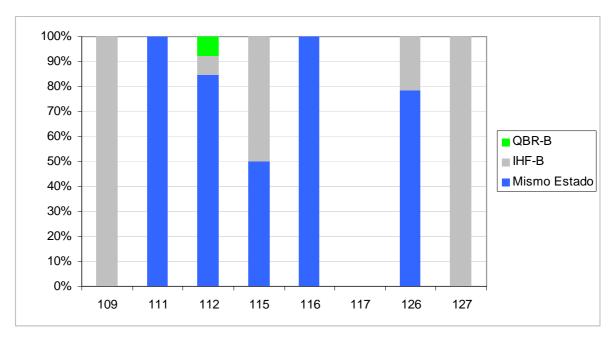


Figura 181. Factores limitantes para las distintas tipologias

En las siguientes figuras se muestran los mapas del estado ecológico en las estaciones muestreadas durante 2010. Se presentan los resultados sin aplicar el índice de macrófitos IVAM (**Figura 182**) y teniéndolo en cuenta en los cálculos (**Figura 183**).

5.7 Estaciones de la Red de Referencia que no cumplen la DMA. Posibles causas y recomendaciones de control

- CEMAS 1169. Río Oca en Villalmondar: La estación obtuvo un estado "Moderado" por los valores obtenidos en el IVAM. Hay que indicar que las características de la estación de muestreo, no son representativas del tipo 112. Además sus aguas presentan valores elevados de conductividad de origen geológico.
- CEMAS 3008. Río Jalón en Campiel: Se trata de la única estación perteneciente a la red de Referencia que no alcanza el nivel exigido por la DMA. Hay que aclarar que esta estación estaba planteada como hipotética zona de referencia para el ecotipo 116, por considerarse como un tramo accesible aguas arriba del cual el río no posee en un cierto tramo demasiadas presiones, sin embargo este tramo si está afectado por las alteraciones de caudal y del régimen hidrológico que sufre el río Jalón en la mayor parte de su recorrido. La fecha de muestreo el río poseía una turbidez entre alta y media-alta. El muestreo fue bastante difícil, viéndose bastante limitado, pues además de la turbidez que no permitía ver el sustrato, los bloques existentes en el tramo se encontraban clavados en el lecho, sobre el cual había también bastante sedimento. El valor hallado en el índice tras analizar la muestra (IBMWP=73) fue algo superior al hallado en la campaña de 2009, si bien sólo se otorgaba a esta estación un estado ecológico "Moderado". Por su parte el valor del IASPT (4,294) fue casi igual al hallado en el año 2009. Las condiciones encontradas en el tramo la fecha de muestreo no se pueden considerar como las más adecuadas para tomar una muestra, lo que pudiera estar alterando los resultados obtenidos.

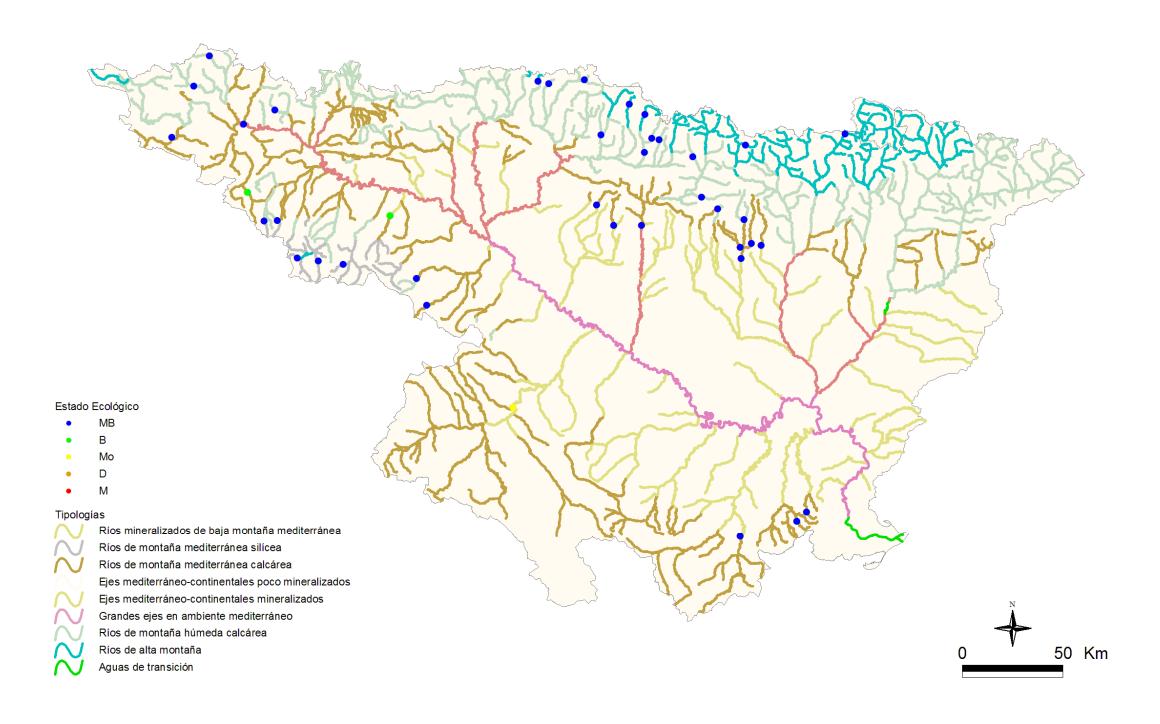


Figura 182. Distribución espacial de los resultados de estado ecológico sin tener en cuenta el IVAM

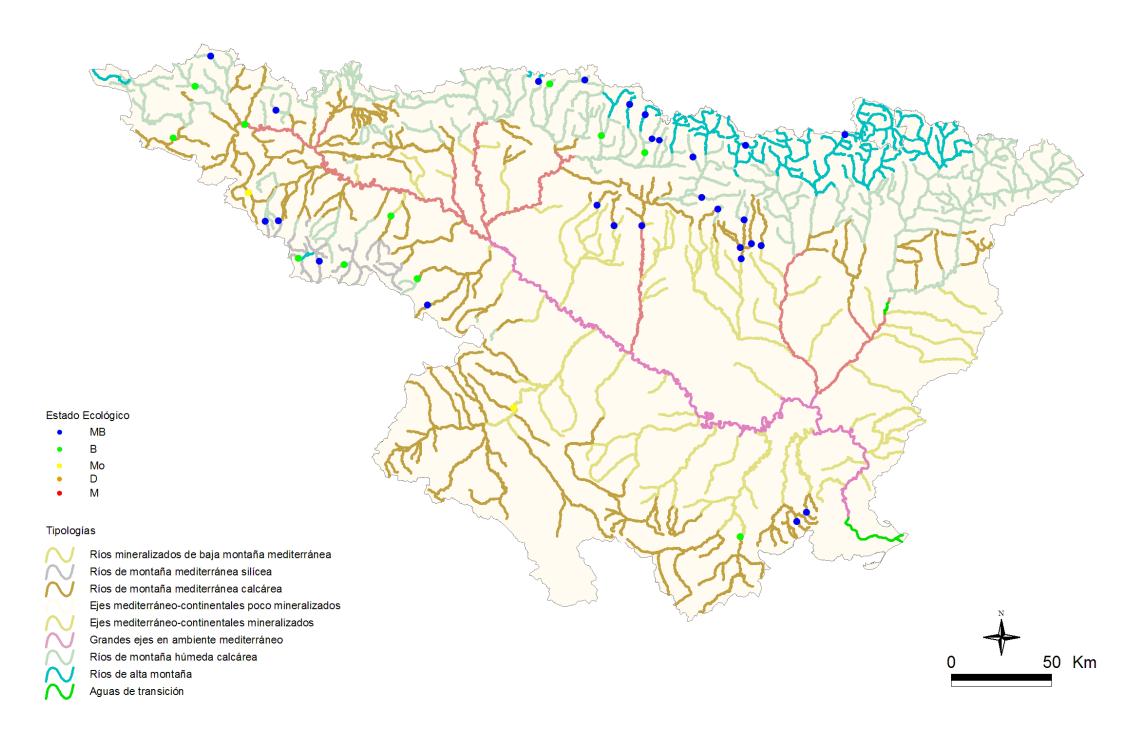


Figura 183. Distribución espacial de los resultados de estado ecológico al tener en cuenta el IVAM

6. CONCLUSIONES GENERALES SOBRE LAS ESTACIONES DE CONTROL, LOS INDICADORES Y EL ESTADO ECOLÓGICO

A la vista de los resultados obtenidos, podemos extraer las siguientes conclusiones generales:

6.1 Conclusiones generales sobre las estaciones de control

- Aquellas estaciones de control que se hallaron secas en verano, se recomienda que sean muestreadas durante el mes de mayo o a principios de junio, siempre y cuando la meteorología y los procedimientos administrativos lo permitan. El resto se muestrearán durante el periodo estival.
- Para las estaciones, que se citan en el apartado 4.5, que no cumplen los criterios establecidos en la DMA, se recomienda seguir con su control dentro de la red de control operativo.
- Las estaciones pertenecientes a la red de Referencia, que no alcanzan el buen estado, apartado 5.7, se tendría que estudiar la posibilidad de eliminarlas de la red o reubicarlas.

6.2 Conclusiones generales sobre los diferentes indicadores

6.2.1 Indicadores Biológicos

- **1. Índice IBMWP**. Se tomaron y analizaron 180 muestras de macroinvertebrados. La media fue 139 puntos. Dos terceras partes obtuvieron valores comprendidos entre 80 y 180. Se observaron diferencias significativas entre las diferentes tipologías. Los tipos 111, 112, 126, y 127 (ríos de montaña) obtuvieron los valores más elevados. Los tipos 109, 115, 116 y 117 presentaron los valores más bajos.
- 2. Índice IASPT. Los valores de IASPT que se obtuvieron, en general, fueron elevados. La media fue de 4,94. Un 47 % de las muestras presentaron valores superiores a 5. Los tipos 111, 126 y 127 (ríos de montaña) obtuvieron los mayores valores. Los tipos 109 y 116 presentaron los valores más bajos.
- 3. Nº de Familias IBMWP (NTAX IBMWP). La riqueza del ecosistema evaluada mediante

este indicador fue elevada. Un 80 % de las estaciones presentaron valores superiores a 20 familias. La media fue de 27 familias. Se observaron diferencias significativas entre los tipos de ríos, con los tipos 111, 112, 126 y 127 (ríos de montaña) destacando por encima de los demás. El tipo 116 presentó los valores más bajos.

- **4.** Nº de Familias totales de Macroinvertebrados (NTAX MAI). Los resultados fueron similares al anterior punto. A destacar, que un 84 % de las estaciones presentaron valores superiores a 20 familias y que la media ascendió hasta las 28 familias. También se observaron diferencias significativas entre las diferentes tipologías de ríos. Los tipos de montaña presentaron los mayores valores.
- **5.** Nº de Géneros de macrófitos. La riqueza de géneros de macrófitos en los ríos de la Cuenca del Ebro osciló de 2 a 25 géneros. La media fue de 11 géneros. Destacó que un 12 % de las estaciones obtuvieron 12 géneros. La mayor riqueza se obtuvo en los tipos 109 y 126. Por el contrario el tipo 116 presentó el menor nº de géneros.
- **6. Índice IVAM.** Se aplicó a 152 estaciones. Los valores oscilaron entre los 2 y los 7 puntos. Un 54 % de las estaciones obtuvo valores superiores a 5. Las diferencias entre tipos de ríos también fueron significativas, con los tipos 111, 126 y 127 (ríos de montaña) destacando por encima de los demás tipos por sus elevados valores. Las estaciones de los tipos 115 y 117 presentaron los valores más bajos de IVAM.
- **5. Índice IPS.** Se aplicó a un total de 139 estaciones. Los valores oscilaron entre los 4,70 y los 20 puntos. Un 42 % de las estaciones obtuvo valores superiores a los 18 puntos. Los tipos 111, 126 y 127 presentaron los valores más elevados. Las estaciones de los tipos 115 y 116 obtuvieron los valores más bajos. El tipo 109 presentó la mayor variabilidad de los datos.

6.2.2 Indicadores Físico-químicos

1. Temperatura. La temperatura osciló entre los 7,58 °C y los 24,9 °C. La media de las estaciones fue de 17,9 °C. Las temperaturas fueron significativamente diferentes entre tipos de ríos, como era de esperar dadas las características climáticas y altitudinales de los diferentes tipos. Los tipos 111 y 127 presentaron las temperaturas más frías, por el

contrario los tipos 117 y 115 presentaron las más cálidas.

- **2. pH**. Las aguas estudiadas son aguas con una cierta basicidad, propia de sistemas con predominancia de geologías calizas. Los valores estuvieron comprendidos entre 6,92 y 10,41. El 47 % de las estaciones obtuvieron valores de pH en el rango 8,0-8,4. El pH resultó diferente entre tipos. Los tipos más extremos fueron el tipo 111, con una media de 7,00 y el tipo 126 con una media de 8,10.
- **3. Conductividad**. La conductividad en los ríos de la Cuenca del Ebro, puede ser elevada debido a causas geológicas. Los valores oscilaron entre los 40 μS·cm⁻¹, de un tramo silíceo, hasta los 38932 μS·cm⁻¹ de un arroyo salino. La media fue de 990 μS·cm⁻¹. El 45 % de las estaciones presentó valores inferiores a 500 μS·cm⁻¹. Se observaron diferencias entre tipos, con los tipos 112 (conductividad media =1444 μS·cm⁻¹) y 111 (196 μS·cm⁻¹) presentando los contrastes más marcados. La variabilidad observada fue muy acentuada en algunos grupos, como en los tipos 112 y 116.
- **4. Oxígeno**. Los valores de oxígeno disuelto en las estaciones muestreadas oscilaron entre los 3,2 mg/L hasta los 13,79 mg/L. Un 60 % de las estaciones presentó valores comprendidos en el rango 8-10 mg/L, Se hallaron diferencias entre tipos de ríos, los valores más elevados se midieron en los tipos de montaña 126 y 127 y los más bajos en el tipo 117.

6.2.3 Indicadores Hidromorfológicos

- 1. Índice IHF. Los valores oscilaron entre los 48 puntos y los 88 puntos. El mayor porcentaje de estaciones, con un 32 %, correspondió al rango de puntuación 65-70. El valor medio para el conjunto de la estaciones fue de 65 puntos. Las diferencias entre tipos de masas de agua fueron significativas, los valores más elevados del índice correspondieron al tipo 111 y los más bajos al tipo 127.
- 2. Índice QBR. La calidad de las riberas, evaluada mediante el índice QBR fue bastante variable, osciló entre los 0 y 100 puntos. Un 52 % de las estaciones obtuvo valores superiores a 80 puntos, lo que sería indicativo de la buena calidad de la vegetación de ribera. Los tipos 111, 126 y 127 (ríos de montaña) presentaron los valores más elevados y el tipo 117 (grandes ejes en ambiente mediterráneo) los más bajos.

6.3 Conclusiones generales sobre el Estado Ecológico según los diferentes indicadores de la Red de Control Operativo

6.3.1 Indicadores Biológicos

- 1. Índice IBMWP. Se tomaron y analizaron 140 muestras de macroinvertebrados. Los valores hallados para el índice IBMWP oscilaron entre 33 y 234 puntos, con un valor medio de 123. El 73 % de los puntos analizados en la campaña del año 2010 tuvieron valores del IBMWP dentro del rango comprendido entre 80 y 180. Se observaron diferencias significativas entre las diferentes tipologías. Los tipos 111, 112, 126, y 127 (ríos de montaña) obtuvieron los valores más elevados. El tipo 116 presentó los valores más bajos.
- 2. Índice IASPT. Los valores de IASPT que se obtuvieron se encontraron entre 3,45 y 6,50 puntos. La media fue de 4,67. Un 34 % de las muestras presentaron valores superiores a 5. Los tipos 111, 126 y 127 (ríos de montaña) obtuvieron los mayores valores. Los tipos 109 y 116 presentaron los valores más bajos.
- 3. Nº de Familias IBMWP (NTAX IBMWP). La riqueza del ecosistema evaluada mediante este indicador fue elevada. Los valores se hallaron comprendidos en el rango 8-42 familias. Un 74 % de las estaciones presentaron valores superiores a 20 familias. La media fue de 25 familias. Se observaron diferencias significativas entre los tipos de ríos, el tipo 126 presentó los valores más altos y el tipo 116 los valores más bajos.
- **4.** Nº de Familias totales de Macroinvertebrados (NTAX MAI). Los resultados fueron similares al anterior punto. Se encontraron estaciones que tuvieron desde 8 hasta 45 familias. A destacar, que un 79 % de las estaciones presentaron valores superiores a 20 familias y que la media ascendió hasta las 27 familias. También se observaron diferencias significativas entre las diferentes tipologías de ríos. Los tipos de montaña presentaron los mayores valores.
- **5.** Nº de Géneros de macrófitos. La riqueza de géneros de macrófitos en los ríos de la red de control operativo de la Cuenca del Ebro osciló de 2 a 22 géneros. La media fue de 11 géneros. Destacó que un 37 % de las estaciones obtuvieron entre 8 y 12 géneros. La mayor riqueza se obtuvo en los tipos 117 y 126. Por el contrario el tipo 116 presentó el menor nº de géneros.

- **6. Índice IVAM.** Se aplicó a 113 estaciones. Los valores oscilaron entre los 2 y los 7 puntos. Un 41 % de las estaciones obtuvo valores superiores a 5. Las diferencias entre tipos de ríos también fueron significativas, con los tipos 111 y 127 (ríos de montaña) destacando por encima de los demás tipos por sus elevados valores. Las estaciones de los tipos 115 y 117 presentaron los valores más bajos de IVAM.
- **5. Índice IPS.** Se aplicó a un total de 103 estaciones. Los valores oscilaron entre los 4,70 y los 19,90 puntos. Casi un tercio de las estaciones obtuvieron valores superiores a 18 puntos. Los tipos 111, 126 y 127 presentaron los valores más elevados. Las estaciones de los tipos 115 y 116 obtuvieron los valores más bajos. El tipo 109 presentó la mayor variabilidad de los datos.

6.3.2 Indicadores Físico-químicos

- **1. Temperatura**. La temperatura osciló entre los 7,58 °C y los 24,86 °C. La media de las estaciones fue de 18,1°C. Las temperaturas fueron significativamente diferentes entre tipos de ríos, como era de esperar dadas las características climáticas y altitudinales de los diferentes tipos. Los tipos 111 y 127 presentaron las temperaturas más frías, por el contrario los tipos 117 y 115 presentaron las más cálidas.
- **2. pH**. Las aguas estudiadas son aguas con una cierta basicidad, propia de sistemas con predominancia de geologías calizas. Los valores estuvieron comprendidos entre 7,42 y 10,41. El 54 % de las estaciones obtuvieron valores superiores a 8. El pH resultó diferente entre tipos. Los tipos más extremos fueron el tipo 117, con una media de 7,79 y el tipo 112 con una media de 8,11.
- **3. Conductividad**. La conductividad en los ríos de la Cuenca del Ebro, puede ser elevada debido a causas geológicas. Los valores oscilaron entre los 101 μS·cm⁻¹, hasta los 38932 μS·cm⁻¹ de un arroyo salino. La media fue de 1168 μS·cm⁻¹. El 34 % de las estaciones presentó valores inferiores a 500 μS·cm⁻¹. Se observaron diferencias entre tipos, con los tipos 112 (conductividad media =1699 μS·cm⁻¹) y 111 (145 μS·cm⁻¹) presentando los contrastes más marcados. La variabilidad observada fue muy acentuada en algunos grupos, como en los tipos 112 y 115.
- 4. Oxígeno. Los valores de oxígeno disuelto en las estaciones muestreadas oscilaron

entre los 3,2 mg/L hasta los 13,57 mg/L. Un 60 % de las estaciones presentó valores comprendidos en el rango 8-10 mg/L, Se hallaron diferencias entre tipos de ríos, los valores más elevados se midieron en los tipos de montaña 126 y 127 y los más bajos en el tipo 117.

6.3.3 Indicadores Hidromorfológicos

- 1. Índice IHF. Los valores oscilaron entre los 48 puntos y los 79 puntos. El mayor porcentaje de estaciones, con un 66 %, correspondió al rango de puntuación 60-70. El valor medio para el conjunto de la estaciones fue de 64 puntos. Las diferencias entre tipos de masas de agua no fueron significativas, los valores más elevados del índice correspondieron al tipo 111 y los más bajos al tipo 127.
- 2. Índice QBR. La calidad de las riberas, evaluada mediante el índice QBR fue bastante variable, osciló entre los 0 y 100 puntos. Un 41 % de las estaciones obtuvo valores superiores a 80 puntos, lo que sería indicativo de la buena calidad de la vegetación de ribera. Los tipos 111, 126 y 127 (ríos de montaña) presentaron los valores más elevados y el tipo 117 (grandes ejes en ambiente mediterráneo) los más bajos.

6.3.4 Estado Ecológico - Macroinvertebrados.

- El 40 % de las estaciones alcanzaron el *muy buen* estado, el 29 % el *buen* estado, el 20 % un estado *moderado*, el estado *deficiente* se dio en el 11 % y el *malo* estuvo ausente.
- Los tipos 109, 112 y 126 presentaron una gran mayoría de estaciones en las clases muy bueno y bueno. Los peores resultados se obtuvieron en el tipo 116, en el que ninguna de las estaciones alcanzó el buen estado.

6.3.5 Estado Ecológico – Macrófitos.

 Un 39 % de las muestras mostraron un estado por debajo de bueno. Las clases mayoritarias fueron bueno, con un 43 % de las muestras, y moderado, con un 33

%. La clase *muy bueno*, con un 18 %, siguió a las anteriores. Las clases *deficiente* y *malo*, con el 5 % y el 1 % de las muestras, respectivamente, fueron minoritarias.

 En los tipos 111, 112, 126 y 127 (ríos de montaña) las clases bueno y muy bueno, fueron las clases mayoritarias. Las clases bueno y moderado predominaron en los tipos 115 y 116. La clase moderado predominó en los tipos 109 y 117 y estuvo ausente en el tipo 111. Las clases deficiente y malo fueron minoritarias.

6.3.6 Estado Ecológico – Fitobentos IPS (Diatomeas)

- Un 22 % de las muestras mostraron un estado por debajo de *bueno*. Las clases mayoritarias fueron *muy bueno*, con un 44 % de las muestras, y *bueno*, con un 34 %. La clase *moderado*, con un 16 % y la clase *deficiente*, con sólo el 6 %, fueron minoritarias.
- En todos los tipos las clases bueno y muy bueno, fueron mayoritarias. La clase moderado se dio en mayor porcentaje en el tipo 115. La clase deficiente predominó en el tipo 109. La clase malo no estuvo representada.

6.3.7 Estado Ecológico según los Indicadores Biológicos

6.3.7.1 Estado Ecológico según los indicadores IBMWP e IPS

- El 32 % de las estaciones se obtuvo un estado ecológico correspondiente a muy bueno y en el 31 % presentó un buen estado. En total, en el 63% de las estaciones para las que se obtuvieron datos de los dos indicadores se cumplieron los objetivos establecidos en la DMA.
- Se obtuvieron diferencias significativas entre los tipos de ríos. Los tipos de montaña, 111 y 126, obtuvieron el mayor número de estaciones que alcanzaron el estado muy bueno. Los peores resultados se obtuvieron en el tipo 116. En el tipo 112, entorno al 50 % de las estaciones en las que se pudo calcular el estado ecológico alcanzaron el estado bueno y muy bueno. Este porcentaje aumentó hasta

el 75 % en el tipo 117.

6.3.7.2 Estado Ecológico según los indicadores IBMWP, IPS e IVAM

- El muy buen estado ecológico se obtuvo en el 14 % de las estaciones, en un 33 % se alcanzó el buen estado y en un 53 % de las estaciones no se cumplieron los objetivos de la DMA. El 36 % obtuvo un estado moderado, el 16 % un estado deficiente y el 1% un estado malo.
- Se obtuvieron diferencias significativas entre los tipos de ríos. Las tipologías que obtuvieron mayor número de estaciones en *muy buen* y *buen* estado ecológico correspondieron a las zonas de montaña (tipos 111, 126 y 127). Los peores resultados se obtuvieron en el tipo 116. El estado *moderado* fue el más abundante en los tipos 109, 112, 115 y 117.

6.3.7.3 Comparación del estado ecológico según los indicadores biológicos aplicados

- Al tener en cuenta el IVAM junto al IPS e IBMWP. Se observó que un 67 % de las estaciones no varió su estado ecológico, un 15 % descendió de estado Muy bueno a Bueno, seguido de un 11 % de las estaciones que pasaron de Bueno a Moderado, un 4 % bajó dos clases de calidad de Muy bueno a Moderado, el resto de cambios de clases de estado ecológico fueron inferiores al 2 %. En total un 33 % de las estaciones variaron su estado ecológico.
- Se compararon los resultados mediante el test de Wilcoxon, para comprobar si las diferencias detectadas eran significativas. Se obtuvo que existían diferencias entre los resultados obtenidos. Posteriormente se repitió el test para cada tipología, en todas en las que se pudo aplicar el test, se obtuvieron diferencias significativas entre los resultados obtenidos al incluir el índice IVAM en el cálculo del estado ecológico.
- Las tipologías 111, 116 y 127 obtuvieron los menores cambios de estado ecológico y, cuando en estos se dio, la variación fue de *Muy bueno* a *Bueno*. La mayor variación se dio en el tipo 117, sobretodo en los cambios de clase de *Muy bueno a*

Moderado y de Bueno a Moderado. En el tipo 112, la mayor variación fue de Muy bueno a Bueno. En el resto de tipologías el cambio de clase que dominó fue el de Bueno a Moderado.

6.3.8 Estado Ecológico según Indicadores Hidromorfológicos

- El 65% de las estaciones, evaluadas mediante el índice IHF, alcanzaron el muy buen estado. Siendo los tipos 111 y 115 en los que mayor porcentaje de estaciones alcanzaron dicho estado. En el resto dominó el muy bueno, excepto en los tipos 109, 116 y 127.
- La calidad de la vegetación de ribera, evaluada con el índice QBR, nos indicó que el 61 % de las estaciones alcanzaron el *muy buen* estado. Por tipologías, se obtuvo que los tipos 111, 112 y 126 presentaron el mayor número de estaciones en *muy buen* estado. En cambio, en los tipos 117 y 127, se obtuvieron los valores más bajos.
- De la combinación de los índices IHF y QBR se obtuvo que un 43 % de las estaciones alcanzó el *muy buen* estado, el 57 % de las estaciones no cumplieron el objetivo marcado en la DMA. Los tipos 111 y 126, ríos de montaña, obtuvieron el mayor número de estaciones que alcanzaron el *muy buen* estado. Las tipologías 109 y 117 presentaron mayor número de estaciones en estado inferior a *muy bueno*.

6.4 Conclusiones generales sobre el Estado Ecológico según los diferentes indicadores de la Red de Referencia

6.4.1 Indicadores Biológicos

1. Índice IBMWP. Se tomaron y analizaron 40 muestras de macroinvertebrados. Los valores hallados para el índice IBMWP oscilaron entre el valor 33 y el valor 316, con una media de 195. Dos terceras partes de de los puntos analizados en la campaña del año 2010 tuvieron valores del IBMWP dentro del rango comprendido entre 160 y 240. Los tipos

111 y 126 (ríos de montaña) presentaron los valores más elevados. El tipo 116 presentó los valores más bajos.

- 2. Índice IASPT. Los valores de IASPT que se obtuvieron se encontraron entre 4,29 y 6,56 puntos. La media fue de 5,6. Un 79 % de las muestras presentaron valores superiores a 5. Los tipos 111 y 127 (ríos de montaña) obtuvieron los mayores valores. El tipo 116 presentó los valores más bajos.
- **3.** Nº de Familias IBMWP (NTAX IBMWP). La riqueza del ecosistema evaluada mediante este indicador fue elevada. Los valores se hallaron comprendidos en el rango 17-54 familias. Un 77 % de las estaciones presentaron valores superiores a 30 familias. La media fue de 35 familias. No se observaron diferencias significativas entre los tipos de ríos, los tipos 111 y 127 presentaron los valores más altos y el tipo 116 los más bajos.
- **4.** Nº de Familias totales de Macroinvertebrados (NTAX MAI). Los resultados fueron similares al anterior punto. Se encontraron estaciones que tuvieron desde 17 hasta 57 familias. A destacar, que un 76 % de las estaciones presentaron valores superiores a 30 familias y que la media ascendió hasta las 36 familias. No se observaron diferencias significativas entre las diferentes tipologías de ríos. Los tipos de montaña presentaron los mayores valores.
- **5.** Nº de Géneros de macrófitos. La riqueza de géneros de macrófitos en los ríos de la red de control operativo de la Cuenca del Ebro osciló de 8 a 25 géneros. La media fue de 13 géneros. Destacó que un 78 % de las estaciones obtuvieron entre 8 y 16 géneros. La mayor riqueza se obtuvo en los tipos 109 y 112. Por el contrario el tipo 116 presentó el menor nº de géneros.
- **6. Índice IVAM.** Se aplicó a 39 estaciones. Los valores oscilaron entre los 3,87 y los 6,78 puntos. Un 76 % de las estaciones obtuvo valores superiores a 5,5. Las diferencias entre tipos de ríos no fueron significativas, con el tipo 127 (ríos de alta montaña) presentó los valores más altos. El valor más bajo se obtuvo en el tipo 112.
- **5. Índice IPS.** Se aplicó a un total de 36 estaciones. Los valores oscilaron entre los 14,40 y los 20 puntos. El 58 % de las estaciones obtuvieron valores superiores a 18,5 puntos y

al media fue de 18,6. No se observaron diferencias significativas entre las diferentes tipologías. Los tipos 111 y 127 presentaron los valores más elevados. La estación con menor puntuación se encontró en el tipo 112.

6.4.2 Indicadores Físico-químicos

- **1. Temperatura**. La temperatura osciló entre los 9,70 °C y los 24,50 °C. La media de las estaciones fue de 17,2 °C. Las temperaturas fueron significativamente diferentes entre tipos de ríos, como era de esperar dadas las características climáticas y altitudinales de los diferentes tipos. Los tipos 111 y 127 presentaron las temperaturas más frías, por el contrario los tipos 112 y 126 presentaron las más cálidas.
- **2. pH**. Las aguas estudiadas son aguas con una cierta basicidad, propia de sistemas con predominancia de geologías calizas. Los valores estuvieron comprendidos entre 6,92 y 8,74, la media fue de 8,06. El 41 % de las estaciones obtuvieron valores entre 8 y 8,2. El pH no resultó diferente entre tipos.
- **3. Conductividad**. La conductividad en los ríos de la Cuenca del Ebro, puede ser elevada debido a causas geológicas. Los valores oscilaron entre los 40 μS·cm⁻¹, hasta los 1050 μS·cm⁻¹. La media fue de 348 μS·cm⁻¹. El 87 % de las estaciones presentó valores inferiores a 500 μS·cm⁻¹. Se observaron diferencias entre tipos, con los tipos 109 y 111 presentando los contrastes más marcados. La variabilidad observada fue muy acentuada en algunos grupos, como el 111 o el 112.
- **4. Oxígeno**. Los valores de oxígeno disuelto en las estaciones muestreadas oscilaron entre los 7,40 mg/L hasta los 13,79 mg/L. Un 75 % de las estaciones presentó valores comprendidos en el rango 8-11 mg/L. No se hallaron diferencias entre tipos de ríos, los valores más elevados se midieron en los tipos 115, 126 y 127 y los más bajos en el tipo 109.

6.4.3 Indicadores Hidromorfológicos

1. Índice IHF. Los valores oscilaron entre los 54 puntos y los 83 puntos. El mayor porcentaje de estaciones, con un 30 %, correspondió al rango de puntuación 65-70. El valor medio para el conjunto de la estaciones fue de 66 puntos. Las diferencias entre tipos

de masas de agua no fueron significativas, los valores más elevados del índice correspondieron al tipo 111 y los más bajos al tipo 127.

2. Índice QBR. La calidad de las riberas, evaluada mediante el índice QBR fue bastante variable, osciló entre los 50 y 100 puntos. Un 87 % de las estaciones obtuvo valores superiores a 90 puntos, lo que sería indicativo de la buena calidad de la vegetación de ribera. Los tipos 109, 126 y 127 (ríos de montaña) presentaron los valores más elevados y el tipo 116 los más bajos.

6.4.4 Estado Ecológico – Macroinvertebrados.

- El 94 % de las estaciones alcanzaron el muy buen estado ecológico, el 3 % alcanzaron el buen estado. En total el 97 % de las estaciones cumplieron con el objetivo de la DMA del "buen estado ecológico". Por el contrario un 3 % de estaciones alcanzaron un estado moderado. El estado malo estuvo ausente.
- Todas las estaciones de las diferentes tipologías cumplieron con los objetivos de la DMA, con la excepción de la estación del tipo 116, que se considera de referencia de manera provisional, que alcanzó un estado *moderado*.

6.4.5 Estado Ecológico – Macrófitos.

- Un 3 % de las muestras mostraron un estado por debajo de *bueno*. Las clases mayoritarias fueron *muy bueno*, con un 66 % de las muestras, y *bueno*, con un 31%.
- En todos los tipos las clases muy bueno y bueno fueron mayoritarias. El estado moderado sólo estuvo presente en el tipo 112.

6.4.6 Estado Ecológico – Fitobentos IPS (Diatomeas)

• Las clases mayoritarias fueron *muy bueno*, con un 97 % de las muestras, y *bueno*, con un 3%.

 En todos los tipos la clase muy bueno fue mayoritaria. La clase bueno sólo estuvo presente en el tipo 112.

6.4.7 Estado Ecológico según los Indicadores Biológicos

6.4.7.1 Estado Ecológico según los indicadores IBMWP e IPS

- El 92 % de las estaciones se obtuvo un estado ecológico correspondiente a muy bueno y en el 5 % presentó un buen estado. En total, en el 97 % de las estaciones para las que se obtuvieron datos de los dos indicadores se cumplieron los objetivos establecidos en la DMA.
- Se obtuvieron diferencias significativas entre los tipos de ríos. En todos los tipos el estado mayoritario fue el *muy bueno*, con la excepción del tipo 116 en el que la única estación obtuvo un estado *moderado*.

6.4.7.2 Estado Ecológico según los indicadores IBMWP, IPS e IVAM

- El muy buen estado ecológico se obtuvo en el 14 % de las estaciones, en un 33 % se alcanzó el buen estado y en un 53 % de las estaciones no se cumplieron los objetivos de la DMA. El 36 % obtuvo un estado moderado, el 16 % un estado deficiente y el 1% un estado malo.
- No se obtuvieron diferencias significativas entre los tipos de ríos. El estado muy bueno dominó en todas las tipologías, con la excepción del tipo 116. El estado bueno estuvo presente en los tipos 111, 112 y 126. Los peores resultados se obtuvieron en el tipo 116.

6.4.7.3 Comparación del estado ecológico según los indicadores biológicos aplicados

Se observó que un 72 % de las estaciones no varió su estado ecológico, un 25 % descendió de estado *Muy bueno* a *Bueno*, seguido de un 3 % de las estaciones que pasaron de *Bueno* a *Moderado*. En total un 28 % de las estaciones variaron su estado ecológico.

- Se compararon los resultados mediante el test de Wilcoxon, para comprobar si las
 diferencias detectadas eran significativas. Se obtuvo que existían diferencias entre
 los resultados obtenidos. Posteriormente se repitió el test para cada tipología, en
 todas en las que se pudo aplicar el test, se obtuvieron diferencias significativas
 entre los resultados obtenidos al incluir el índice IVAM en el cálculo del estado
 ecológico.
- Las tipologías 111, 112 y 126 obtuvieron los mayores cambios de estado ecológico y, cuando en estos se dio, la variación fue de *Muy bueno* a *Bueno*.

6.4.8 Estado Ecológico según Indicadores Hidromorfológicos

- El 72 % de las estaciones, evaluadas mediante el índice IHF, alcanzaron el *muy* buen estado. Siendo los tipos 111, 112, 115, 116 y 126 en los que mayor porcentaje de estaciones alcanzaron dicho estado. En el resto dominó el bueno.
- La calidad de la vegetación de ribera, evaluada con el índice QBR, nos indicó que el 97 % de las estaciones alcanzaron el *muy buen* estado. Por tipologías, se obtuvo que todos los tipos presentaron el mayor número de estaciones en *muy buen* estado. El *buen* estado sólo estuvo presente en el tipo 112.
- De la combinación de los índices IHF y QBR se obtuvo que un 73 % de las estaciones alcanzó el muy buen estado, el 27 % de las estaciones no cumplieron el objetivo marcado en la DMA. Todas las tipologías obtuvieron mayor proporción de estaciones en estado muy bueno. Con la excepción de los tipos 109 y 127 en los que obtuvieron un buen estado.

6.5 Resumen de las conclusiones generales

6.5.1 Datos generales de los muestreos

- De las 232 estaciones en las que estaba previsto realizar muestreos, sólo se pudieron llevar a cabo en 183 estaciones. En las 49 restantes, no se pudo muestrear, bien por no ser vadeables (n=15), inaccesibles (n=14), estar secas (n=10), ser no representativas (n=8) y por estar en obras (n=2).
- Se tomaron 180 muestras de macroinvertebrados, 139 de diatomeas y 152 de macrófitos.

6.5.2 Red de Control Operativo

- En la red de control operativo estaba previsto el muestreo de 190 estaciones, al final se obtuvieron datos para un total de 144 estaciones.
- Se tomaron 140 muestras de macroinvertebrados, 103 de diatomeas y 113 de macrófitos.
- De los datos obtenidos para los diferentes índices, IBMWP, IPS e IVAM, se obtuvo el estado ecológico de la red de control operativo. Se obtuvo que al calcular el estado ecológico en base al IBMWP y el IPS, un 32% (n=46) estaban en "muy buen" estado, un 31% (n=44) en estado "bueno", un 24% (n=35) en estado "moderado" y un 13% (n=18) es estado "deficiente". Al tener en cuenta el IVAM, los resultados variaron, 14% (n=20) estado "muy bueno", un 33% (n=47) en estado "bueno", 36% (n=53) en estado "moderado", un 16% (n=23) en estado "deficiente" y un 1 % (n=1) es estado "malo".

6.5.3 Red de Referencia

 En la red de referencia estaba previsto el muestreo de 42 estaciones, al final se obtuvieron datos para un total de 40 estaciones.

- Se tomaron 40 muestras de macroinvertebrados, 36 de diatomeas y 39 de macrófitos.
- De los datos obtenidos para los diferentes índices, IBMWP, IPS e IVAM, se obtuvo el estado ecológico de la red de referencia. Se obtuvo que al calcular el estado ecológico en base al IBMWP y el IPS, un 92% (n=37) estaban en "muy buen" estado, un 5% (n=2) en estado "bueno" y un 3% (n=1) en estado "moderado". Al tener en cuenta el IVAM, los resultados variaron, 67% (n=27) estado "muy bueno", un 28% (n=11) en estado "bueno" y un 5% (n=2) en estado "moderado".

7. REFERENCIAS

ALBA-TERCEDOR J., JÁIMEZ-CUÉLLAR P., ÁLVAREZ M., AVILÉS J., BONADA N., CASAS J., MELLADO A., ORTEGA M., PARDO I., PRAT N., RIERADEVALL M., ROBLES S., SÁINZ-CANTERO C.E., SÁNCHEZ-ORTEGA A., SUÁREZ M.L., TORO M., VIDAL-ABARCA M.R., VIVAS S. y ZAMORA-MUÑOZ C., 2002. Caracterización del estado ecológico de ríos mediterráneos ibéricos mediante el índice IBMWP (antes BMWP'). *Limnetica*, 21(3-4): 175-185.

BARBOUR M.T., GERRITSEN J., SNYDER B.D. y J.B. STRIBLING. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: Periphyton, benthic macroinvertebrates and fish. Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency, Office of Water, Washington D.C. 339 pp.

CEMAGREF, 1982. Etude des methods biologiques d'appréciation quantitative de la qualité des eaux. Rapport Q.E. Lyon, Agence de l'Eau Rhône-Méditerranée-Corse-Cemagref, Lyon, 218 pp.

CONFEDERACIÓN HIDROGRÁFICA DEL EBRO, 2005a. *Metodología para el establecimiento del Estado Ecológico según la Directiva Marco del Agua. Protocolos de muestreo y análisis para Fitobentos (microalgas bentónicas).* Comisaría de Aguas, Confederación Hidrográfica del Ebro, Ministerio de Medioambiente, 39 pp.

CONFEDERACIÓN HIDROGRÁFICA DEL EBRO, 2005b. *Metodología para el establecimiento del Estado Ecológico según la Directiva Marco del Agua. Protocolos de muestreo y análisis para macrófitos.* Comisaría de Aguas, Confederación Hidrográfica del Ebro, Ministerio de Medioambiente, 39 pp.

CONFEDERACIÓN HIDROGRÁFICA DEL EBRO, 2005c. Metodología para el establecimiento del Estado Ecológico según la Directiva Marco del Agua. Protocolos de muestreo y análisis para invertebrados bentónicos. Comisaría de Aguas, Confederación Hidrográfica del Ebro, Ministerio de Medioambiente, 56 pp.

Control del Estado de las Masas de Agua Superficiales, (CEMAS), 2010. Informe de situación Año 2009. Confederación Hidrográfica del Ebro.

EUROPEAN COMISSION, 2003. WFD CIS Guidance Document No. 13. Overall Approach to the Classification of Ecological Status and Ecological Potential.

CUMMINS K.W. 1974. Structure and function of stream ecosystem. *Bioscience*, 24: 631-641.

DIRECTIVA 2009/90/CE DE LA COMISIÓN de 31 de julio de 2009 por la que se establecen, de conformidad con la Directiva 2000/60/CE del Parlamento Europeo y del Consejo, las especificaciones técnicas del análisis químico y del seguimiento del estado de las aguas.

GRAÇA M.A.S., COIMBRA C.N. y SANTOS L.M., 1995. Identification level and comparison of biological indicators in biomonitoring programs. *Cienc. Biol. Ecol. Syst.*, 15 (1/2): 9-20.

JÁIMEZ-CUELLAR P., VIVAS S., BONADA N., ROBLES S., MELLADO A., ÁLVAREZ M., AVILÉS J., CASAS J., ORTEGA M., PARDO I., PRAT N., RIERADEVALL M., SÁINZ-CANTERO C.E., SÁNCHEZ-ORTEGA A., SUÁREZ M.L., TORO M., VIDAL-ABARCA M.R., ZAMORA-MUÑOZ C. y ALBA-TERCEDOR J., 2002. Protocolo GUADALMED (PRECE). *Limnetica*, 21(3-4): 187-204.

JÁIMEZ CUELLAR, P., PALOMINO MORALES, J.A., LUZÓN ORTEGA, J.M. Y ALBA TERCEDOR, J.,2006. Comparación de metodologías empleadas para la evaluación del estado ecológico de los cursos de agua. *Tecnología del agua* 26, 278: 42-57

MORENO, J.L., NAVARRO, C. y DE LAS HERAS, J., 2005. Índice Genérico de Vegetación Acuática (IVAM): propuesta de evaluación rápida del estado ecológico en los ríos ibéricos en aplicación de la Directiva Marco del Agua. *Tecnología del Agua*, 26: 48-53.

MORENO, J.L., NAVARRO, C. y DE LAS HERAS, J., 2006. Propuesta de un indice de vegetacion acuatica (IVAM) para la evaluacion del estado trofico de los rios de Castilla-La Mancha: Comparacion con otros indices bioticos. *Limnetica*, 25 (3): 821-838

MUNNÉ, A, C. SOLÁ & N. PRAT., 1998. Un índice rápido para la evaluación de la calidad de los ecosistemas de ribera. Tecnología del Agua, 175: 20-37.

OLSGARD F., SOMERFIELD P.J. y CARR M.R., 1998. Relationships between taxonomic resolution, macrobenthic community patterns and disturbance. *Mar. Ecol. Prog. Ser.*, 172: 25-36.

ORDEN ARM/2656/2008, DE 10 DE SEPTIEMBRE, por la que se aprueba la instrucción de Planificación Hidrológica.

ORTIZ, J. L., 2004. La directiva marco del agua (2000/60/CE): aspectos relevantes para el

proyecto Guadalmed. Limnetica 21(3-4) (2002): 5-12.

PARDO I. et al., 2004. El hábitat de los ríos mediterráneos. Diseño de un índice de diversidad de hábitat. Limnetica 21(3-4): 115-133 (2002).

STATZNER B., BIS B., DOLÉDEC S. y P. USSEGLIO-POLATERA., 2001. Perspectives for biomonitoring at large spatial scales: a unified measure for the functional composition of invertebrate communities in European running waters. *Basic Appl. Ecol.*, 2: 73-85.

SUÁREZ M.L., 2004. Las riberas de los ríos mediterráneos y su calidad: el uso del índice QBR. Limnetica 21(3-4) (2002).

TACHET H., BOURNAUD M. y RICHOUX P., 1984. *Introduction à l'étude des macroinvertébrés des eaux douces (Systématique élémentaire et aperçu écologique)*. Université Lyon I. Association Française de Limnologie. Ministère de l'Environment. 2ª Ed.

TACHET H., RICHOUX P., BOURNAUD M. y USSEGLIO-POLATERA P., 2000. *Invertébrés d'eau douce: systématique, biologie, écologie.* CNRS éditions, Paris. 588 p.

Anexo 1

Resultados Biológicos, Físico-Químicos e Hidromorfológicos

